|
| 1 | +// Copyright (c) Facebook, Inc. and its affiliates. |
| 2 | +// |
| 3 | +// This source code is licensed under the MIT license found in the |
| 4 | +// LICENSE file in the root directory of this source tree. |
| 5 | +// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. |
| 6 | +// |
| 7 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +// you may not use this file except in compliance with the License. |
| 9 | +// You may obtain a copy of the License at |
| 10 | +// |
| 11 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +// |
| 13 | +// Unless required by applicable law or agreed to in writing, software |
| 14 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +// See the License for the specific language governing permissions and |
| 17 | +// limitations under the License. |
| 18 | + |
| 19 | +#include "paddle/extension.h" |
| 20 | +#include<stdlib.h> |
| 21 | +#include<string.h> |
| 22 | +#include<sys/types.h> |
| 23 | +#include<sys/stat.h> |
| 24 | +#include<unistd.h> |
| 25 | +#include<fcntl.h> |
| 26 | +#include<sys/mman.h> |
| 27 | +#include<stdio.h> |
| 28 | +#include<algorithm> |
| 29 | +#include<cub/device/device_scan.cuh> |
| 30 | +#include <cub/block/block_radix_sort.cuh> |
| 31 | +#include <cub/warp/warp_reduce.cuh> |
| 32 | +#include <cub/block/block_load.cuh> |
| 33 | +#include <cub/block/block_discontinuity.cuh> |
| 34 | +#include <cub/block/block_store.cuh> |
| 35 | +#include <cub/block/block_reduce.cuh> |
| 36 | +#include <cub/cub.cuh> |
| 37 | +#include <math_constants.h> |
| 38 | +#include <thrust/host_vector.h> |
| 39 | +#include <thrust/device_vector.h> |
| 40 | +#include <mma.h> |
| 41 | +#include "common.h" |
| 42 | + |
| 43 | +__device__ float dDequantizeFP4Tree(unsigned char val, float absmax) |
| 44 | +{ |
| 45 | + float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f; |
| 46 | + if((val & 0b0100) == 4) // 0 |
| 47 | + if((val & 0b0010) == 2) //01 |
| 48 | + if((val & 0b0001) == 1) // 111 |
| 49 | + return 0.25000000f*absmax*sign; // 1111 |
| 50 | + else |
| 51 | + return 0.16666667f*absmax*sign; // 1110 |
| 52 | + else |
| 53 | + if((val & 0b0001) == 1) // 110 |
| 54 | + return 0.50000000f*absmax*sign; // 1101 |
| 55 | + else |
| 56 | + return 0.33333333f*absmax*sign; // 1100 |
| 57 | + else |
| 58 | + if((val & 0b0010) == 2) //10 |
| 59 | + if((val & 0b0001) == 1) // 101 |
| 60 | + return 1.00000000f*absmax*sign; // 1011 |
| 61 | + else |
| 62 | + return 0.66666667f*absmax*sign; // 1010 |
| 63 | + else |
| 64 | + if((val & 0b0001) == 1) // 100 |
| 65 | + return 5.208333333e-03f*absmax*sign; // 1001 |
| 66 | + else |
| 67 | + return 0.00000000f*absmax*sign; // 1000 |
| 68 | +} |
| 69 | + |
| 70 | +__device__ float dDequantizeNF4(unsigned char val) |
| 71 | +{ |
| 72 | + |
| 73 | + // the values for this tree was generated by test_normal_map_tree |
| 74 | + // in the file tests/test_functional.py |
| 75 | + if((val & 0b1000) == 8) |
| 76 | + if((val & 0b0100) == 4) // 1 |
| 77 | + if((val & 0b0010) == 2) // 11 |
| 78 | + if((val & 0b0001) == 1) // 111 |
| 79 | + return 1.0f; |
| 80 | + else |
| 81 | + return 0.7229568362236023f; |
| 82 | + else |
| 83 | + if((val & 0b0001) == 1) // 110 |
| 84 | + return 0.5626170039176941f; |
| 85 | + else |
| 86 | + return 0.44070982933044434f; |
| 87 | + else |
| 88 | + if((val & 0b0010) == 2) //10 |
| 89 | + if((val & 0b0001) == 1) // 101 |
| 90 | + return 0.33791524171829224f; |
| 91 | + else |
| 92 | + return 0.24611230194568634f; |
| 93 | + else |
| 94 | + if((val & 0b0001) == 1) // 100 |
| 95 | + return 0.16093020141124725f; |
| 96 | + else |
| 97 | + return 0.07958029955625534f; |
| 98 | + |
| 99 | + else |
| 100 | + if((val & 0b0100) == 4) // 0 |
| 101 | + if((val & 0b0010) == 2) //01 |
| 102 | + if((val & 0b0001) == 1) // 011 |
| 103 | + return 0.0f; |
| 104 | + else |
| 105 | + return -0.09105003625154495f; |
| 106 | + else |
| 107 | + if((val & 0b0001) == 1) // 010 |
| 108 | + return -0.18477343022823334f; |
| 109 | + else |
| 110 | + return -0.28444138169288635f; |
| 111 | + else |
| 112 | + if((val & 0b0010) == 2) //00 |
| 113 | + if((val & 0b0001) == 1) // 001 |
| 114 | + return -0.39491748809814453f; |
| 115 | + else |
| 116 | + return -0.5250730514526367f; |
| 117 | + else |
| 118 | + if((val & 0b0001) == 1) // 000 |
| 119 | + return -0.6961928009986877f; |
| 120 | + else |
| 121 | + return -1.0f; |
| 122 | + |
| 123 | +} |
| 124 | + |
| 125 | + |
| 126 | +template<typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE> |
| 127 | +__global__ void kDequantizeBlockwise(const float *code, const unsigned char * A, const float * absmax, T *out, int blocksize, int n) |
| 128 | +{ |
| 129 | + |
| 130 | + const int n_load = (gridDim.x * TILE_SIZE); |
| 131 | + int valid_items_load = 0; |
| 132 | + int valid_items_store = 0; |
| 133 | + const int base_idx = (blockIdx.x * TILE_SIZE); |
| 134 | + |
| 135 | + T vals[NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1)]; |
| 136 | + unsigned char qvals[NUM_PER_TH]; |
| 137 | + float local_abs_max = -FLT_MAX; |
| 138 | + |
| 139 | + typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar; |
| 140 | + typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT; |
| 141 | + |
| 142 | + __shared__ typename LoadChar::TempStorage loadchar; |
| 143 | + __shared__ typename StoreT::TempStorage storet; |
| 144 | + |
| 145 | + for (unsigned int i = base_idx; i < n_load; i += gridDim.x*TILE_SIZE) |
| 146 | + { |
| 147 | + if(DATA_TYPE > 0) |
| 148 | + { |
| 149 | + valid_items_load = (n+1)/2 - i > TILE_SIZE ? TILE_SIZE : (n+1)/2 - i; |
| 150 | + valid_items_store = n - i*2 > TILE_SIZE*2 ? TILE_SIZE*2 : n - i*2; |
| 151 | + } |
| 152 | + else |
| 153 | + { |
| 154 | + valid_items_load = n - i > TILE_SIZE ? TILE_SIZE : n - i; |
| 155 | + valid_items_store = n - i > TILE_SIZE ? TILE_SIZE : n - i; |
| 156 | + } |
| 157 | + local_abs_max = __ldg(&absmax[(i+threadIdx.x*NUM_PER_TH)/(blocksize)]); |
| 158 | + |
| 159 | + __syncthreads(); |
| 160 | + LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128); |
| 161 | + |
| 162 | + switch(DATA_TYPE) |
| 163 | + { |
| 164 | + case General8bit: |
| 165 | + // load code through read-only cache via __ldg |
| 166 | + #pragma unroll NUM_PER_TH |
| 167 | + for(int j = 0; j < NUM_PER_TH; j++) |
| 168 | + vals[j] = __ldg(&code[qvals[j]])*local_abs_max; |
| 169 | + break; |
| 170 | + case FP4: |
| 171 | + #pragma unroll NUM_PER_TH |
| 172 | + for(int j = 0; j < NUM_PER_TH; j++) |
| 173 | + { |
| 174 | + vals[j*2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max); |
| 175 | + vals[j*2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max); |
| 176 | + } |
| 177 | + break; |
| 178 | + case NF4: |
| 179 | + #pragma unroll NUM_PER_TH |
| 180 | + for(int j = 0; j < NUM_PER_TH; j++) |
| 181 | + { |
| 182 | + vals[j*2] = dDequantizeNF4(qvals[j] >> 4)* local_abs_max; |
| 183 | + vals[j*2 + 1] = dDequantizeNF4(qvals[j] & 0x0F)* local_abs_max; |
| 184 | + } |
| 185 | + break; |
| 186 | + } |
| 187 | + |
| 188 | + __syncthreads(); |
| 189 | + StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i*2 : i]), vals, valid_items_store); |
| 190 | + } |
| 191 | +} |
| 192 | + |
| 193 | +//template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(const float *code, const unsigned char * A, const float * absmax, half *out, int blocksize, int n); |
| 194 | +//template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(const float *code, const unsigned char * A, const float * absmax, half *out, int blocksize, int n); |
| 195 | +//template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(const float *code, const unsigned char * A, const float * absmax, half *out, int blocksize, int n); |
| 196 | +template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(const float *code, const unsigned char * A, const float * absmax, float *out, int blocksize, int n); |
| 197 | +template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(const float *code, const unsigned char * A, const float * absmax, float *out, int blocksize, int n); |
| 198 | +template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(const float *code, const unsigned char * A, const float * absmax, float *out, int blocksize, int n); |
| 199 | +//template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(const float *code, const unsigned char * A, const float * absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 200 | +//template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(const float *code, const unsigned char * A, const float * absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 201 | +//template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(const float *code, const unsigned char * A, const float * absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 202 | + |
| 203 | + |
| 204 | + |
| 205 | +template<typename T, int DATA_TYPE> void dequantize_blockwise(const float *code, const unsigned char *A, const float *absmax, T *out, int blocksize, int n) |
| 206 | +{ |
| 207 | + int num_blocks = n/blocksize; |
| 208 | + num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1; |
| 209 | + int tile_size = (DATA_TYPE > 0) ? 1024 : 512; |
| 210 | + |
| 211 | + if(DATA_TYPE > 0) |
| 212 | + kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64>>>(code, A, absmax, out, blocksize/2, n); |
| 213 | + else |
| 214 | + kDequantizeBlockwise<T, 512, 64, 8, DATA_TYPE><<<(n+tile_size-1)/tile_size, 64>>>(code, A, absmax, out, blocksize, n); |
| 215 | + |
| 216 | + CUDA_CHECK_RETURN(cudaPeekAtLastError()); |
| 217 | +} |
| 218 | + |
| 219 | +template void dequantize_blockwise<float, General8bit>(const float *code, const unsigned char *A, const float *absmax, float *out, int blocksize, int n); |
| 220 | +template void dequantize_blockwise<float, FP4>(const float *code, const unsigned char *A, const float *absmax, float *out, int blocksize, int n); |
| 221 | +template void dequantize_blockwise<float, NF4>(const float *code, const unsigned char *A, const float *absmax, float *out, int blocksize, int n); |
| 222 | +//template void dequantize_blockwise<half, General8bit>(const float *code, const unsigned char *A, const float *absmax, half *out, int blocksize, int n); |
| 223 | +//template void dequantize_blockwise<half, FP4>(const float *code, const unsigned char *A, const float *absmax, half *out, int blocksize, int n); |
| 224 | +//template void dequantize_blockwise<half, NF4>(const float *code, const unsigned char *A, const float *absmax, half *out, int blocksize, int n); |
| 225 | +//template void dequantize_blockwise<__nv_bfloat16, General8bit>(const float *code, const unsigned char *A, const float *absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 226 | +//template void dequantize_blockwise<__nv_bfloat16, FP4>(const float *code, const unsigned char *A, const float *absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 227 | +//template void dequantize_blockwise<__nv_bfloat16, NF4>(const float *code, const unsigned char *A, const float *absmax, __nv_bfloat16 *out, int blocksize, int n); |
| 228 | + |
| 229 | +std::vector<paddle::Tensor> DequantizeBlockwise(const paddle::Tensor& input, const paddle::Tensor& code, const paddle::Tensor& absmax, int blocksize, std::string quant_type) { |
| 230 | + int64_t input_numel = input.numel(); |
| 231 | + int n = input_numel; |
| 232 | + std::vector<int64_t> out_shape = input.shape(); |
| 233 | + if (quant_type != "8bit") { // 4bit |
| 234 | + out_shape = {input_numel * 2, 1}; |
| 235 | + n = n * 2; |
| 236 | + } |
| 237 | + auto out = paddle::empty(out_shape, paddle::DataType::FLOAT32, input.place()); |
| 238 | + |
| 239 | + if (quant_type == "8bit") |
| 240 | + dequantize_blockwise<float, General8bit>(code.data<float>(), input.data<unsigned char>(), absmax.data<float>(), out.data<float>(), blocksize, n); |
| 241 | + else if (quant_type == "nf4") |
| 242 | + dequantize_blockwise<float, NF4>(NULL, input.data<unsigned char>(), absmax.data<float>(), out.data<float>(), blocksize, n); |
| 243 | + else if (quant_type == "fp4") |
| 244 | + dequantize_blockwise<float, FP4>(NULL, input.data<unsigned char>(), absmax.data<float>(), out.data<float>(), blocksize, n); |
| 245 | + else |
| 246 | + PD_THROW("NOT supported quant type. Only 8bit, nf4, fp4 are supported. "); |
| 247 | + return {out}; |
| 248 | +}; |
| 249 | + |
| 250 | +std::vector<std::vector<int64_t>> GetDequantizeBlockwiseInferShape(const std::vector<int64_t>& input_shape, const std::vector<int64_t>& code_shape, const std::vector<int64_t>& abs_max_shape, int blocksize, std::string quant_type){ |
| 251 | + int64_t first_shape = input_shape[0] * input_shape[1] * 2; |
| 252 | + if (quant_type != "8bit") |
| 253 | + return {{first_shape, 1}}; |
| 254 | + else |
| 255 | + return {input_shape}; |
| 256 | +} |
| 257 | +std::vector<paddle::DataType> GetDequantizeBlockwiseInferDtype(const paddle::DataType& input_dtype, const paddle::DataType& code_dtype, const paddle::DataType& abs_max_dtype){ |
| 258 | + return {paddle::DataType::FLOAT32}; |
| 259 | +} |
| 260 | + |
| 261 | + |
| 262 | +PD_BUILD_OP(dequant_blockwise) |
| 263 | + .Inputs({"input", "code", "abs_max"}) |
| 264 | + .Outputs({"output"}) |
| 265 | + .Attrs({"blocksize: int", "quant_type: std::string"}) |
| 266 | + .SetKernelFn(PD_KERNEL(DequantizeBlockwise)) |
| 267 | + .SetInferShapeFn(PD_INFER_SHAPE(GetDequantizeBlockwiseInferShape)) |
| 268 | + .SetInferDtypeFn(PD_INFER_DTYPE(GetDequantizeBlockwiseInferDtype)); |
| 269 | + |
| 270 | + |
0 commit comments