-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
507 lines (376 loc) · 18.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import numpy as np
import os
import torch
from torch import optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
import math
from models.CC import CrowdCounter
# from config import cfg
# from config_resnet50_finetuning import cfg
# from config_VGG_Decoder_finetuning import cfg
# from config_VGG_Decoder_training import cfg
# from config_VGG_Original import cfg
# from config_Resnet50_GCC import cfg
# from config_VGG_decoder_GCC import cfg
# from config_VGG_Decoder_SHHB import cfg
# from config_Resnet50_GCC_finetuning import cfg
# from config_VGG_Decoder_GCC_finetuning import cfg
# from config_Resnet50_GCC_inducing_CAP import cfg
# from config_Resnet50_NTU import cfg
# from config_Resnet50_NTU_finetune import cfg
# from config_Resnet50_NTU_CAP import cfg
# from config_ResSFCN_NTU import cfg
# from config_ResSFCN_GCC import cfg
# from config_ResSFCN_SHHB import cfg
# from config_Res101_GCC import cfg
# from config_Res101_SHHB import cfg
# from config_VGG_Decoder_NTU import cfg
# from config_Resnet50_SHHB import cfg
# from config_CSRNet_GCC import cfg
# from config_CSRNet_SHHB import cfg
# from config_MCNN_SHHB import cfg
# from config_MCNN_GCC import cfg
# from config_MCNN_IN_GCC import cfg
# from config_MCNN_IN_SHHB import cfg
# from config_CSRNet_SHHB import cfg
# from config_SANet_SHHB import cfg
#------------prepare data loader------------
# data_mode = cfg.DATASET
# if data_mode is 'SHHA':
# from datasets.SHHA.loading_data import loading_data
# from datasets.SHHA.setting import cfg_data
# elif data_mode is 'SHHB':
# from datasets.SHHB.loading_data import loading_data
# from datasets.SHHB.setting import cfg_data
# elif data_mode is 'QNRF':
# from datasets.QNRF.loading_data import loading_data
# from datasets.QNRF.setting import cfg_data
# elif data_mode is 'UCF50':
# from datasets.UCF50.loading_data import loading_data
# from datasets.UCF50.setting import cfg_data
# elif data_mode is 'WE':
# from datasets.WE.loading_data import loading_data
# from datasets.WE.setting import cfg_data
# elif data_mode is 'GCC':
# from datasets.GCC.loading_data import loading_data
# from datasets.GCC.setting import cfg_data
# elif data_mode is 'Mall':
# from datasets.Mall.loading_data import loading_data
# from datasets.Mall.setting import cfg_data
# elif data_mode is 'UCSD':
# from datasets.UCSD.loading_data import loading_data
# from datasets.UCSD.setting import cfg_data
# elif data_mode is 'NTU':
# from datasets.NTU.loading_data import loading_data
# from datasets.NTU.setting import cfg_data
from misc.utils import *
import pdb
from collections import OrderedDict
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
i_parts = k.split('.')
i_parts.insert(1,"module")
new_state_dict['.'.join(i_parts[0:])] = v
return new_state_dict
def convert_state_dict_CCN_Module(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
i_parts = k.split('.')
i_parts.insert(0,"CCN")
i_parts.insert(1,"module")
new_state_dict['.'.join(i_parts[0:])] = v
return new_state_dict
def convert_state_dict_gcc(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
"""E.g., "CCN.module.features4.0.weight" to "CCN.features4.0.weight" """
new_state_dict = OrderedDict()
for k, v in state_dict.items():
i_parts = k.split('.')
i_parts.pop(1)
new_state_dict['.'.join(i_parts[0:])] = v
return new_state_dict
def convert_state_dict_CNN(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
+CCN.module
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
i_parts = k.split('.')
i_parts.insert(0,"CCN")
new_state_dict['.'.join(i_parts[0:])] = v
return new_state_dict
class Trainer():
def __init__(self, dataloader, cfg_data, pwd,cfg):
self.cfg_data = cfg_data
self.data_mode = cfg.DATASET
self.exp_name = cfg.EXP_NAME
self.exp_path = cfg.EXP_PATH
self.pwd = pwd
self.cfg=cfg
self.net_name = cfg.NET
self.net = CrowdCounter(cfg.GPU_ID,self.net_name).cuda()
self.num_parameters= sum([param.nelement() for param in self.net.parameters()])
print('num_parameters:',self.num_parameters)
self.optimizer = optim.Adam(self.net.CCN.parameters(), lr=cfg.LR, weight_decay=1e-4)
# self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
self.scheduler = StepLR(self.optimizer, step_size=cfg.NUM_EPOCH_LR_DECAY, gamma=cfg.LR_DECAY)
self.train_record = {'best_mae': 1e20, 'best_mse':1e20, 'best_model_name': '_'}
self.hparam={'lr': cfg.LR, 'n_epochs': cfg.MAX_EPOCH,'number of parameters':self.num_parameters,'dataset':cfg.DATASET}#,'finetuned':cfg.FINETUNE}
self.timer = {'iter time' : Timer(),'train time' : Timer(),'val time' : Timer()}
self.epoch = 0
self.i_tb = 0
if cfg.PRE_GCC:
print('===================Loaded Pretrained GCC================')
weight=torch.load(cfg.PRE_GCC_MODEL)['net']
# weight=torch.load(cfg.PRE_GCC_MODEL)
try:
self.net.load_state_dict(convert_state_dict_gcc(weight))
except:
self.net.load_state_dict(weight)
# self.net=torch.nn.DataParallel(self.net, device_ids=cfg.GPU_ID).cuda()
self.train_loader, self.val_loader, self.restore_transform = dataloader()
if cfg.RESUME:
print('===================Loaded model to resume================')
latest_state = torch.load(cfg.RESUME_PATH)
self.net.load_state_dict(latest_state['net'])
self.optimizer.load_state_dict(latest_state['optimizer'])
self.scheduler.load_state_dict(latest_state['scheduler'])
self.epoch = latest_state['epoch'] + 1
self.i_tb = latest_state['i_tb']
self.train_record = latest_state['train_record']
self.exp_path = latest_state['exp_path']
self.exp_name = latest_state['exp_name']
#self.writer, self.log_txt = logger(self.exp_path, self.exp_name, self.pwd, 'exp',self.train_loader, self.val_loader, resume=cfg.RESUME,cfg=cfg)
def forward(self):
# print('forward!!')
# self.validate_V3()
with open(self.log_txt, 'a') as f:
f.write(str(self.net) + '\n')
f.write('num_parameters:'+str(self.num_parameters)+'\n')
for epoch in range(self.epoch,self.cfg.MAX_EPOCH):
self.epoch = epoch
if epoch > self.cfg.LR_DECAY_START:
self.scheduler.step()
# training
self.timer['train time'].tic()
self.train()
self.timer['train time'].toc(average=False)
print( 'train time: {:.2f}s'.format(self.timer['train time'].diff) )
print( '='*20 )
self.net.eval()
# validation
if epoch%self.cfg.VAL_FREQ==0 or epoch>self.cfg.VAL_DENSE_START:
self.timer['val time'].tic()
if self.data_mode in ['SHHA', 'SHHB', 'QNRF', 'UCF50','Mall']:
self.validate_V1()
elif self.data_mode is 'WE':
self.validate_V2()
elif self.data_mode is 'GCC':
self.validate_V3()
elif self.data_mode is 'NTU':
self.validate_V4()
self.timer['val time'].toc(average=False)
print( 'val time: {:.2f}s'.format(self.timer['val time'].diff) )
def train(self): # training for all datasets
self.net.train()
for i, data in enumerate(self.train_loader, 0):
self.timer['iter time'].tic()
img, gt_map = data
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
self.optimizer.zero_grad()
pred_map = self.net(img, gt_map)
loss = self.net.loss
loss.backward()
self.optimizer.step()
if (i + 1) % self.cfg.PRINT_FREQ == 0:
self.i_tb += 1
self.writer.add_scalar('train_loss', loss.item(), self.i_tb)
self.timer['iter time'].toc(average=False)
print( '[ep %d][it %d][loss %.4f][lr %.6f][%.2fs]' % \
(self.epoch + 1, i + 1, loss.item(), self.optimizer.param_groups[0]['lr'], self.timer['iter time'].diff) )
print( ' [cnt: gt: %.1f pred: %.2f]' % (gt_map[0].sum().data/self.cfg_data.LOG_PARA, pred_map[0].sum().data/self.cfg_data.LOG_PARA) )
self.writer.add_scalar('lr', self.optimizer.param_groups[0]['lr'], self.epoch + 1)
def validate_V1(self):# validate_V1 for SHHA, SHHB, UCF-QNRF, UCF50
self.net.eval()
losses = AverageMeter()
maes = AverageMeter()
mses = AverageMeter()
for vi, data in enumerate(self.val_loader, 0):
img, gt_map = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img, gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img])/self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map[i_img])/self.cfg_data.LOG_PARA
losses.update(self.net.loss.item())
maes.update(abs(gt_count-pred_cnt))
mses.update((gt_count-pred_cnt)*(gt_count-pred_cnt))
if vi==0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
mae = maes.avg
mse = np.sqrt(mses.avg)
loss = losses.avg
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mse', mse, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, mse, loss],self.train_record,False,self.log_txt)
print_summary(self.log_txt,self.epoch,self.exp_name,[mae, mse, loss],self.train_record)
def validate_V2(self):# validate_V2 for WE
self.net.eval()
losses = AverageCategoryMeter(5)
maes = AverageCategoryMeter(5)
roi_mask = []
from datasets.WE.setting import cfg_data
from scipy import io as sio
for val_folder in cfg_data.VAL_FOLDER:
roi_mask.append(sio.loadmat(os.path.join(cfg_data.DATA_PATH,'test',val_folder + '_roi.mat'))['BW'])
for i_sub,i_loader in enumerate(self.val_loader,0):
mask = roi_mask[i_sub]
for vi, data in enumerate(i_loader, 0):
img, gt_map = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img,gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img])/self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map[i_img])/self.cfg_data.LOG_PARA
losses.update(self.net.loss.item(),i_sub)
maes.update(abs(gt_count-pred_cnt),i_sub)
if vi==0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
mae = np.average(maes.avg)
loss = np.average(losses.avg)
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mae_s1', maes.avg[0], self.epoch + 1)
self.writer.add_scalar('mae_s2', maes.avg[1], self.epoch + 1)
self.writer.add_scalar('mae_s3', maes.avg[2], self.epoch + 1)
self.writer.add_scalar('mae_s4', maes.avg[3], self.epoch + 1)
self.writer.add_scalar('mae_s5', maes.avg[4], self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, 0, loss],self.train_record,self.log_txt)
print_WE_summary(self.log_txt,self.epoch,[mae, 0, loss],self.train_record,maes)
# self.writer.add_hparams(self.hparam, {'best_mae': mae, 'best_mse':mse})
def validate_V3(self):# validate_V3 for GCC
self.net.eval()
losses = AverageMeter()
maes = AverageMeter()
mses = AverageMeter()
c_maes = {'level':AverageCategoryMeter(9), 'time':AverageCategoryMeter(8),'weather':AverageCategoryMeter(7)}
c_mses = {'level':AverageCategoryMeter(9), 'time':AverageCategoryMeter(8),'weather':AverageCategoryMeter(7)}
for vi, data in enumerate(self.val_loader, 0):
img, gt_map, attributes_pt = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img, gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img])/self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map[i_img])/self.cfg_data.LOG_PARA
s_mae = abs(gt_count-pred_cnt)
s_mse = (gt_count-pred_cnt)*(gt_count-pred_cnt)
losses.update(self.net.loss.item())
maes.update(s_mae)
mses.update(s_mse)
attributes_pt = attributes_pt.squeeze()
c_maes['level'].update(s_mae,attributes_pt[i_img][0])
c_mses['level'].update(s_mse,attributes_pt[i_img][0])
c_maes['time'].update(s_mae,attributes_pt[i_img][1]/3)
c_mses['time'].update(s_mse,attributes_pt[i_img][1]/3)
c_maes['weather'].update(s_mae,attributes_pt[i_img][2])
c_mses['weather'].update(s_mse,attributes_pt[i_img][2])
if vi==0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
loss = losses.avg
mae = maes.avg
mse = np.sqrt(mses.avg)
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mse', mse, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, mse, loss],self.train_record,False,self.log_txt)
print_GCC_summary(self.log_txt,self.epoch,[mae, mse, loss],self.train_record,c_maes,c_mses)
def validate_V4(self):# validate_V4 for NTU
self.net.eval()
losses = AverageMeter()
maes = AverageMeter()
mses = AverageMeter()
for vi, data in enumerate(self.val_loader, 0):
img, gt_map = data
with torch.no_grad():
img = Variable(img).cuda()
gt_map = Variable(gt_map).cuda()
pred_map = self.net.forward(img, gt_map)
pred_map = pred_map.data.cpu().numpy()
gt_map = gt_map.data.cpu().numpy()
for i_img in range(pred_map.shape[0]):
pred_cnt = np.sum(pred_map[i_img])/self.cfg_data.LOG_PARA
gt_count = np.sum(gt_map[i_img])/self.cfg_data.LOG_PARA
s_mae = abs(gt_count-pred_cnt)
s_mse = (gt_count-pred_cnt)*(gt_count-pred_cnt)
losses.update(self.net.loss.item())
maes.update(s_mae)
mses.update(s_mse)
if vi==0:
vis_results(self.exp_name, self.epoch, self.writer, self.restore_transform, img, pred_map, gt_map)
loss = losses.avg
mae = maes.avg
mse = np.sqrt(mses.avg)
self.writer.add_scalar('val_loss', loss, self.epoch + 1)
self.writer.add_scalar('mae', mae, self.epoch + 1)
self.writer.add_scalar('mse', mse, self.epoch + 1)
self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
[mae, mse, loss],self.train_record,False,self.log_txt)
print_NTU_summary(self.log_txt,self.epoch,[mae, mse, loss],self.train_record)
if __name__ == '__main__':
#------------prepare enviroment------------
seed = cfg.SEED
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpus = cfg.GPU_ID
if len(gpus)==1:
torch.cuda.set_device(gpus[0])
torch.backends.cudnn.benchmark = True
#------------Prepare Trainer------------
net = cfg.NET
if net in ['MCNN', 'AlexNet', 'VGG', 'VGG_DECODER','Res50', 'Res101', 'CSRNet','Res101_SFCN']:
from trainer import Trainer
elif net in ['SANet']:
from trainer_for_M2TCC import Trainer # double losses but signle output
elif net in ['CMTL']:
from trainer_for_CMTL import Trainer # double losses and double outputs
elif net in ['PCCNet']:
from trainer_for_M3T3OCC import Trainer
#------------Start Training------------
pwd = os.path.split(os.path.realpath(__file__))[0]
cc_trainer = Trainer(loading_data,cfg_data,pwd)
# print('ready to forward')
cc_trainer.forward()