-
Notifications
You must be signed in to change notification settings - Fork 516
/
Copy pathplot_SSNB.py
127 lines (108 loc) · 4.93 KB
/
plot_SSNB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# -*- coding: utf-8 -*-
r"""
=====================================================
Smooth and Strongly Convex Nearest Brenier Potentials
=====================================================
This example is designed to show how to use SSNB [58] in POT.
SSNB computes an l-strongly convex potential :math:`\varphi` with an L-Lipschitz gradient such that
:math:`\nabla \varphi \# \mu \approx \nu`. This regularity can be enforced only on the components of a partition
of the ambient space, which is a relaxation compared to imposing global regularity.
In this example, we consider a source measure :math:`\mu_s` which is the uniform measure on the unit square in
:math:`\mathbb{R}^2`, and the target measure :math:`\mu_t` which is the image of :math:`\mu_x` by
:math:`T(x_1, x_2) = (x_1 + 2\mathrm{sign}(x_2), 2 * x_2)`. The map :math:`T` is non-smooth, and we wish to approximate
it using a "Brenier-style" map :math:`\nabla \varphi` which is regular on the partition
:math:`\lbrace x_1 <=0, x_1>0\rbrace`, which is well adapted to this particular dataset.
We represent the gradients of the "bounding potentials" :math:`\varphi_l, \varphi_u` (from [59], Theorem 3.14),
which bound any SSNB potential which is optimal in the sense of [58], Definition 1:
.. math::
\varphi \in \mathrm{argmin}_{\varphi \in \mathcal{F}}\ \mathrm{W}_2(\nabla \varphi \#\mu_s, \mu_t),
where :math:`\mathcal{F}` is the space functions that are on every set :math:`E_k` l-strongly convex
with an L-Lipschitz gradient, given :math:`(E_k)_{k \in [K]}` a partition of the ambient source space.
We perform the optimisation on a low amount of fitting samples and with few iterations,
since solving the SSNB problem is quite computationally expensive.
THIS EXAMPLE REQUIRES CVXPY
.. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization:
Smooth and strongly convex brenier potentials in optimal transport. In International Conference
on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020.
.. [59] Adrien B Taylor. Convex interpolation and performance estimation of first-order methods for
convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium,
2017.
"""
# Author: Eloi Tanguy <[email protected]>
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import matplotlib.pyplot as plt
import numpy as np
import ot
# %%
# Generating the fitting data
n_fitting_samples = 30
rng = np.random.RandomState(seed=0)
Xs = rng.uniform(-1, 1, size=(n_fitting_samples, 2))
Xs_classes = (Xs[:, 0] < 0).astype(int)
Xt = np.stack([Xs[:, 0] + 2 * np.sign(Xs[:, 0]), 2 * Xs[:, 1]], axis=-1)
plt.scatter(
Xs[Xs_classes == 0, 0], Xs[Xs_classes == 0, 1], c="blue", label="source class 0"
)
plt.scatter(
Xs[Xs_classes == 1, 0],
Xs[Xs_classes == 1, 1],
c="dodgerblue",
label="source class 1",
)
plt.scatter(Xt[:, 0], Xt[:, 1], c="red", label="target")
plt.axis("equal")
plt.title("Splitting sphere dataset")
plt.legend(loc="upper right")
plt.show()
# %%
# Fitting the Nearest Brenier Potential
L = 3 # need L > 2 to allow the 2*y term, default is 1.4
phi, G = ot.mapping.nearest_brenier_potential_fit(
Xs, Xt, Xs_classes, its=10, init_method="barycentric", gradient_lipschitz_constant=L
)
# %%
# Plotting the images of the source data
plt.clf()
plt.scatter(Xs[:, 0], Xs[:, 1], c="dodgerblue", label="source")
plt.scatter(Xt[:, 0], Xt[:, 1], c="red", label="target")
for i in range(n_fitting_samples):
plt.plot([Xs[i, 0], G[i, 0]], [Xs[i, 1], G[i, 1]], color="black", alpha=0.5)
plt.title("Images of in-data source samples by the fitted SSNB")
plt.legend(loc="upper right")
plt.axis("equal")
plt.show()
# %%
# Computing the predictions (images by nabla phi) for random samples of the source distribution
n_predict_samples = 50
Ys = rng.uniform(-1, 1, size=(n_predict_samples, 2))
Ys_classes = (Ys[:, 0] < 0).astype(int)
phi_lu, G_lu = ot.mapping.nearest_brenier_potential_predict_bounds(
Xs, phi, G, Ys, Xs_classes, Ys_classes, gradient_lipschitz_constant=L
)
# %%
# Plot predictions for the gradient of the lower-bounding potential
plt.clf()
plt.scatter(Xs[:, 0], Xs[:, 1], c="dodgerblue", label="source")
plt.scatter(Xt[:, 0], Xt[:, 1], c="red", label="target")
for i in range(n_predict_samples):
plt.plot(
[Ys[i, 0], G_lu[0, i, 0]], [Ys[i, 1], G_lu[0, i, 1]], color="black", alpha=0.5
)
plt.title("Images of new source samples by $\\nabla \\varphi_l$")
plt.legend(loc="upper right")
plt.axis("equal")
plt.show()
# %%
# Plot predictions for the gradient of the upper-bounding potential
plt.clf()
plt.scatter(Xs[:, 0], Xs[:, 1], c="dodgerblue", label="source")
plt.scatter(Xt[:, 0], Xt[:, 1], c="red", label="target")
for i in range(n_predict_samples):
plt.plot(
[Ys[i, 0], G_lu[1, i, 0]], [Ys[i, 1], G_lu[1, i, 1]], color="black", alpha=0.5
)
plt.title("Images of new source samples by $\\nabla \\varphi_u$")
plt.legend(loc="upper right")
plt.axis("equal")
plt.show()