You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+7-9
Original file line number
Diff line number
Diff line change
@@ -40,8 +40,7 @@ POT provides the following generic OT solvers (links to examples):
40
40
*[Sampled solver of Gromov Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) for large-scale problem with any loss functions [33]
41
41
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html)[20].
42
42
*[One dimensional Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html)[10, 25]. Also [exact unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_unbalanced_ot.html) with KL and quadratic regularization and the [regularization path of UOT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_regpath.html)[41]
43
-
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
44
-
formulations).
43
+
*[Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) and [Partial Fused Gromov-Wasserstein](https://pythonot.github.io/auto_examples/gromov/plot_partial_fgw.html) (exact [29] and entropic [3] formulations).
45
44
*[Sliced Wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html)[31, 32] and Max-sliced Wasserstein [35] that can be used for gradient flows [36].
46
45
*[Wasserstein distance on the circle](https://pythonot.github.io/auto_examples/plot_compute_wasserstein_circle.html)[44, 45]
Every contribution is welcome and should respect the [contribution guidelines](https://pythonot.github.io/master/contributing.html). Each member of the project is expected to follow the [code of conduct](https://pythonot.github.io/master/code_of_conduct.html).
@@ -391,3 +385,7 @@ Artificial Intelligence.
391
385
[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). [The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation](https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf). Neural Information Processing Systems (NeurIPS).
392
386
393
387
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
388
+
389
+
[74] Chewi, S., Maunu, T., Rigollet, P., & Stromme, A. J. (2020). [Gradient descent algorithms for Bures-Wasserstein barycenters](https://proceedings.mlr.press/v125/chewi20a.html). In Conference on Learning Theory (pp. 1276-1304). PMLR.
390
+
391
+
[75] Altschuler, J., Chewi, S., Gerber, P. R., & Stromme, A. (2021). [Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent](https://papers.neurips.cc/paper_files/paper/2021/hash/b9acb4ae6121c941324b2b1d3fac5c30-Abstract.html). Advances in Neural Information Processing Systems, 34, 22132-22145.
-`ot.gaussian.bures_wasserstein_distance` can be batched (PR #680)
17
+
- Backend implementation of `ot.dist` for (PR #701)
18
+
- Updated documentation Quickstart guide and User guide with new API (PR #726)
11
19
- Implement low rank through Factor Relaxation with Latent Coupling (PR #719)
12
20
13
21
#### Closed issues
@@ -16,6 +24,7 @@
16
24
- Add version number to the documentation (PR #696)
17
25
- Update doc for default regularization in `ot.unbalanced` sinkhorn solvers (Issue #691, PR #700)
18
26
- Clean documentation for `gromov`, `lp` and `unbalanced` folders (PR #710)
27
+
- Clean references in documentation (PR #722)
19
28
20
29
## 0.9.5
21
30
@@ -44,7 +53,6 @@ This release also contains few bug fixes, concerning the support of any metric i
44
53
- Notes before depreciating partial Gromov-Wasserstein function in `ot.partial` moved to ot.gromov (PR #663)
45
54
- Create `ot.gromov._partial` add new features `loss_fun = "kl_loss"` and `symmetry=False` to all solvers while increasing speed + updating adequatly `ot.solvers` (PR #663)
0 commit comments