@@ -195,26 +195,26 @@ Estimating dual variables for entropic OT
195
195
196
196
.. code-block :: none
197
197
198
- Iter: 0, loss=0.20204949002247308
199
- Iter: 10, loss=-19.551101352817334
200
- Iter: 20, loss=-31.551458051531817
201
- Iter: 30, loss=-35.7636881046527
202
- Iter: 40, loss=-39.034476256142355
203
- Iter: 50, loss=-40.6280858859757
204
- Iter: 60, loss=-41.604004073406124
205
- Iter: 70, loss=-41.818288329560566
206
- Iter: 80, loss=-41.989647890237734
207
- Iter: 90, loss=-42.03180987676141
208
- Iter: 100, loss=-42.055013109267094
209
- Iter: 110, loss=-42.062629072113054
210
- Iter: 120, loss=-42.06626885119863
211
- Iter: 130, loss=-42.06844988963407
212
- Iter: 140, loss=-42.069939208182966
213
- Iter: 150, loss=-42.070996679188674
214
- Iter: 160, loss=-42.07177543369965
215
- Iter: 170, loss=-42.0723760924461
216
- Iter: 180, loss=-42.07284348639993
217
- Iter: 190, loss=-42.07320986183685
198
+ Iter: 0, loss=0.2020494900225641
199
+ Iter: 10, loss=-19.541676622733295
200
+ Iter: 20, loss=-31.735836715687295
201
+ Iter: 30, loss=-36.618793395554086
202
+ Iter: 40, loss=-39.83845867036572
203
+ Iter: 50, loss=-41.14518853070982
204
+ Iter: 60, loss=-41.66991355578482
205
+ Iter: 70, loss=-41.84706534362833
206
+ Iter: 80, loss=-41.88857395701371
207
+ Iter: 90, loss=-41.91035463004136
208
+ Iter: 100, loss=-41.91743385705979
209
+ Iter: 110, loss=-41.91959207805565
210
+ Iter: 120, loss=-41.92049197287366
211
+ Iter: 130, loss=-41.92105290866285
212
+ Iter: 140, loss=-41.92130510788596
213
+ Iter: 150, loss=-41.92146925094368
214
+ Iter: 160, loss=-41.92159132695289
215
+ Iter: 170, loss=-41.92169055089339
216
+ Iter: 180, loss=-41.92177233929467
217
+ Iter: 190, loss=-41.92184312657864
218
218
219
219
220
220
@@ -319,25 +319,25 @@ Estimating dual variables for quadratic OT
319
319
.. code-block :: none
320
320
321
321
Iter: 0, loss=-0.0018442196020623663
322
- Iter: 10, loss=-19.47816608787497
323
- Iter: 20, loss=-31.50033642838461
324
- Iter: 30, loss=-35.52005725731263
325
- Iter: 40, loss=-38.945130956940254
326
- Iter: 50, loss=-40.363092092514094
327
- Iter: 60, loss=-41.379390235877494
328
- Iter: 70, loss=-41.67855907657883
329
- Iter: 80, loss=-41.83972370966888
330
- Iter: 90, loss=-41.90216019622647
331
- Iter: 100, loss=-41.92186511597178
332
- Iter: 110, loss=-41.930491719790005
333
- Iter: 120, loss=-41.93460180784624
334
- Iter: 130, loss=-41.9372894164
335
- Iter: 140, loss=-41.93949157907267
336
- Iter: 150, loss=-41.94154733605073
337
- Iter: 160, loss=-41.94315709103125
338
- Iter: 170, loss=-41.944223378820006
339
- Iter: 180, loss=-41.94487174493441
340
- Iter: 190, loss=-41.94525245478749
322
+ Iter: 10, loss=-19.55017434263893
323
+ Iter: 20, loss=-31.347698856134237
324
+ Iter: 30, loss=-36.30414973124457
325
+ Iter: 40, loss=-39.44424288116018
326
+ Iter: 50, loss=-40.8600905041555
327
+ Iter: 60, loss=-41.43875932962067
328
+ Iter: 70, loss=-41.7017040151525
329
+ Iter: 80, loss=-41.753059572856095
330
+ Iter: 90, loss=-41.793122830389215
331
+ Iter: 100, loss=-41.802319075834625
332
+ Iter: 110, loss=-41.80715842088403
333
+ Iter: 120, loss=-41.80855728888973
334
+ Iter: 130, loss=-41.80914880131256
335
+ Iter: 140, loss=-41.80928209396796
336
+ Iter: 150, loss=-41.80935061812178
337
+ Iter: 160, loss=-41.809379249526906
338
+ Iter: 170, loss=-41.8093945438798
339
+ Iter: 180, loss=-41.8094025908204
340
+ Iter: 190, loss=-41.80940862825199
341
341
342
342
343
343
@@ -380,7 +380,7 @@ Plot the estimated quadratic OT plan
380
380
381
381
.. rst-class :: sphx-glr-timing
382
382
383
- **Total running time of the script: ** (0 minutes 9.049 seconds)
383
+ **Total running time of the script: ** (0 minutes 17.411 seconds)
384
384
385
385
386
386
.. _sphx_glr_download_auto_examples_backends_plot_dual_ot_pytorch.py :
0 commit comments