@@ -195,26 +195,26 @@ Estimating dual variables for entropic OT
195
195
196
196
.. code-block :: none
197
197
198
- Iter: 0, loss=0.2020494900224745
199
- Iter: 10, loss=-19.57618259614961
200
- Iter: 20, loss=-31.66301265244961
201
- Iter: 30, loss=-36.50666181688356
202
- Iter: 40, loss=-39.95100518352593
203
- Iter: 50, loss=-41.47867745038081
204
- Iter: 60, loss=-42.40982244225048
205
- Iter: 70, loss=-42.75576775807454
206
- Iter: 80, loss=-42.96194349519
207
- Iter: 90, loss=-43.010399265246384
208
- Iter: 100, loss=-43.04617124235882
209
- Iter: 110, loss=-43.05966450080063
210
- Iter: 120, loss=-43.06794354289777
211
- Iter: 130, loss=-43.073006381620885
212
- Iter: 140, loss=-43.076636666041324
213
- Iter: 150, loss=-43.079366227386934
214
- Iter: 160, loss=-43.08154681843257
215
- Iter: 170, loss=-43.08329470262464
216
- Iter: 180, loss=-43.08470031156932
217
- Iter: 190, loss=-43.08581430429776
198
+ Iter: 0, loss=0.202049490022473
199
+ Iter: 10, loss=-19.49942521965765
200
+ Iter: 20, loss=-31.658280394643207
201
+ Iter: 30, loss=-35.907837287180875
202
+ Iter: 40, loss=-38.95231618671824
203
+ Iter: 50, loss=-40.63472110777525
204
+ Iter: 60, loss=-41.428437008367894
205
+ Iter: 70, loss=-41.57292501821869
206
+ Iter: 80, loss=-41.65390714976431
207
+ Iter: 90, loss=-41.68837925711983
208
+ Iter: 100, loss=-41.69859895901433
209
+ Iter: 110, loss=-41.70101376621021
210
+ Iter: 120, loss=-41.702842572879625
211
+ Iter: 130, loss=-41.70357118936795
212
+ Iter: 140, loss=-41.70394891940299
213
+ Iter: 150, loss=-41.704190391352505
214
+ Iter: 160, loss=-41.70437160490415
215
+ Iter: 170, loss=-41.70451018830662
216
+ Iter: 180, loss=-41.7046236183371
217
+ Iter: 190, loss=-41.70471893714058
218
218
219
219
220
220
@@ -319,25 +319,25 @@ Estimating dual variables for quadratic OT
319
319
.. code-block :: none
320
320
321
321
Iter: 0, loss=-0.0018442196020623663
322
- Iter: 10, loss=-19.544292446025445
323
- Iter: 20, loss=-31.280524158660008
324
- Iter: 30, loss=-36.19856648665331
325
- Iter: 40, loss=-39.62982578094831
326
- Iter: 50, loss=-41.171229459917676
327
- Iter: 60, loss=-42.12753723269981
328
- Iter: 70, loss=-42.55976656784887
329
- Iter: 80, loss=-42.761741861484026
330
- Iter: 90, loss=-42.86048643148755
331
- Iter: 100, loss=-42.896210186167515
332
- Iter: 110, loss=-42.912518604496654
333
- Iter: 120, loss=-42.92196834252769
334
- Iter: 130, loss=-42.92766529649812
335
- Iter: 140, loss=-42.93143626004543
336
- Iter: 150, loss=-42.93430243457384
337
- Iter: 160, loss=-42.93669507664405
338
- Iter: 170, loss=-42.93876197077028
339
- Iter: 180, loss=-42.94043926818304
340
- Iter: 190, loss=-42.941767213471
322
+ Iter: 10, loss=-19.76260285675617
323
+ Iter: 20, loss=-31.602402063956877
324
+ Iter: 30, loss=-35.74655038942226
325
+ Iter: 40, loss=-38.83929304001835
326
+ Iter: 50, loss=-40.45321197269921
327
+ Iter: 60, loss=-41.152539146867575
328
+ Iter: 70, loss=-41.41214679503097
329
+ Iter: 80, loss=-41.51321463756855
330
+ Iter: 90, loss=-41.557348889785736
331
+ Iter: 100, loss=-41.56907217636828
332
+ Iter: 110, loss=-41.57480296157927
333
+ Iter: 120, loss=-41.576586788387544
334
+ Iter: 130, loss=-41.5772839880003
335
+ Iter: 140, loss=-41.577554575962814
336
+ Iter: 150, loss=-41.577660285916004
337
+ Iter: 160, loss=-41.57770125151936
338
+ Iter: 170, loss=-41.57772639029642
339
+ Iter: 180, loss=-41.577740225081975
340
+ Iter: 190, loss=-41.57775039353258
341
341
342
342
343
343
@@ -380,7 +380,7 @@ Plot the estimated quadratic OT plan
380
380
381
381
.. rst-class :: sphx-glr-timing
382
382
383
- **Total running time of the script: ** (0 minutes 8.564 seconds)
383
+ **Total running time of the script: ** (0 minutes 28.854 seconds)
384
384
385
385
386
386
.. _sphx_glr_download_auto_examples_backends_plot_dual_ot_pytorch.py :
0 commit comments