-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrf_layer.py
535 lines (462 loc) · 25 KB
/
crf_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
from __future__ import absolute_import
from __future__ import division
from keras import backend as K
from keras import activations
from keras import initializers
from keras import regularizers
from keras import constraints
from keras.engine import Layer
from keras.engine import InputSpec
from keras.objectives import categorical_crossentropy
from keras.objectives import sparse_categorical_crossentropy
class CRF(Layer):
"""An implementation of linear chain conditional random field (CRF).
An linear chain CRF is defined to maximize the following likelihood function:
$$ L(W, U, b; y_1, ..., y_n) := \frac{1}{Z} \sum_{y_1, ..., y_n} \exp(-a_1' y_1 - a_n' y_n
- \sum_{k=1^n}((f(x_k' W + b) y_k) + y_1' U y_2)), $$
where:
$Z$: normalization constant
$x_k, y_k$: inputs and outputs
This implementation has two modes for optimization:
1. (`join mode`) optimized by maximizing join likelihood, which is optimal in theory of statistics.
Note that in this case, CRF must be the output/last layer.
2. (`marginal mode`) return marginal probabilities on each time step and optimized via composition
likelihood (product of marginal likelihood), i.e., using `categorical_crossentropy` loss.
Note that in this case, CRF can be either the last layer or an intermediate layer (though not explored).
For prediction (test phrase), one can choose either Viterbi best path (class indices) or marginal
probabilities if probabilities are needed. However, if one chooses *join mode* for training,
Viterbi output is typically better than marginal output, but the marginal output will still perform
reasonably close, while if *marginal mode* is used for training, marginal output usually performs
much better. The default behavior is set according to this observation.
In addition, this implementation supports masking and accepts either onehot or sparse target.
# Examples
```python
model = Sequential()
model.add(Embedding(3001, 300, mask_zero=True)(X)
# use learn_mode = 'join', test_mode = 'viterbi', sparse_target = True (label indice output)
crf = CRF(10, sparse_target=True)
model.add(crf)
# crf.accuracy is default to Viterbi acc if using join-mode (default).
# One can add crf.marginal_acc if interested, but may slow down learning
model.compile('adam', loss=crf.loss_function, metrics=[crf.accuracy])
# y must be label indices (with shape 1 at dim 3) here, since `sparse_target=True`
model.fit(x, y)
# prediction give onehot representation of Viterbi best path
y_hat = model.predict(x_test)
```
# Arguments
units: Positive integer, dimensionality of the output space.
learn_mode: Either 'join' or 'marginal'.
The former train the model by maximizing join likelihood while the latter
maximize the product of marginal likelihood over all time steps.
test_mode: Either 'viterbi' or 'marginal'.
The former is recommended and as default when `learn_mode = 'join'` and
gives one-hot representation of the best path at test (prediction) time,
while the latter is recommended and chosen as default when `learn_mode = 'marginal'`,
which produces marginal probabilities for each time step.
sparse_target: Boolean (default False) indicating if provided labels are one-hot or
indices (with shape 1 at dim 3).
use_boundary: Boolean (default True) indicating if trainable start-end chain energies
should be added to model.
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs.
(see [initializers](../initializers.md)).
chain_initializer: Initializer for the `chain_kernel` weights matrix,
used for the CRF chain energy.
(see [initializers](../initializers.md)).
boundary_initializer: Initializer for the `left_boundary`, 'right_boundary' weights vectors,
used for the start/left and end/right boundary energy.
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
activation: Activation function to use
(see [activations](../activations.md)).
If you pass None, no activation is applied
(ie. "linear" activation: `a(x) = x`).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
chain_regularizer: Regularizer function applied to
the `chain_kernel` weights matrix
(see [regularizer](../regularizers.md)).
boundary_regularizer: Regularizer function applied to
the 'left_boundary', 'right_boundary' weight vectors
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
chain_constraint: Constraint function applied to
the `chain_kernel` weights matrix
(see [constraints](../constraints.md)).
boundary_constraint: Constraint function applied to
the `left_boundary`, `right_boundary` weights vectors
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
input_dim: dimensionality of the input (integer).
This argument (or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used.
Unrolling can speed-up a RNN, although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
# Input shape
3D tensor with shape `(nb_samples, timesteps, input_dim)`.
# Output shape
3D tensor with shape `(nb_samples, timesteps, units)`.
# Masking
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.
"""
def __init__(self, units,
learn_mode='join',
test_mode=None,
sparse_target=False,
use_boundary=True,
use_bias=True,
activation='linear',
kernel_initializer='glorot_uniform',
chain_initializer='orthogonal',
bias_initializer='zeros',
boundary_initializer='zeros',
kernel_regularizer=None,
chain_regularizer=None,
boundary_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
chain_constraint=None,
boundary_constraint=None,
bias_constraint=None,
input_dim=None,
unroll=False,
**kwargs):
super(CRF, self).__init__(**kwargs)
self.supports_masking = True
self.units = units
self.learn_mode = learn_mode
assert self.learn_mode in ['join', 'marginal']
self.test_mode = test_mode
if self.test_mode is None:
self.test_mode = 'viterbi' if self.learn_mode == 'join' else 'marginal'
else:
assert self.test_mode in ['viterbi', 'marginal']
self.sparse_target = sparse_target
self.use_boundary = use_boundary
self.use_bias = use_bias
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.chain_initializer = initializers.get(chain_initializer)
self.boundary_initializer = initializers.get(boundary_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.chain_regularizer = regularizers.get(chain_regularizer)
self.boundary_regularizer = regularizers.get(boundary_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.chain_constraint = constraints.get(chain_constraint)
self.boundary_constraint = constraints.get(boundary_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.unroll = unroll
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape[-1]
self.kernel = self.add_weight((self.input_dim, self.units),
name='kernel',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.chain_kernel = self.add_weight((self.units, self.units),
name='chain_kernel',
initializer=self.chain_initializer,
regularizer=self.chain_regularizer,
constraint=self.chain_constraint)
if self.use_bias:
self.bias = self.add_weight((self.units,),
name='bias',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
if self.use_boundary:
self.left_boundary = self.add_weight((self.units,),
name='left_boundary',
initializer=self.boundary_initializer,
regularizer=self.boundary_regularizer,
constraint=self.boundary_constraint)
self.right_boundary = self.add_weight((self.units,),
name='right_boundary',
initializer=self.boundary_initializer,
regularizer=self.boundary_regularizer,
constraint=self.boundary_constraint)
self.built = True
def call(self, X, mask=None):
if mask is not None:
assert K.ndim(mask) == 2, 'Input mask to CRF must have dim 2 if not None'
if self.test_mode == 'viterbi':
test_output = self.viterbi_decoding(X, mask)
else:
test_output = self.get_marginal_prob(X, mask)
self.uses_learning_phase = True
if self.learn_mode == 'join':
train_output = K.zeros_like(K.dot(X, self.kernel))
out = K.in_train_phase(train_output, test_output)
else:
if self.test_mode == 'viterbi':
train_output = self.get_marginal_prob(X, mask)
out = K.in_train_phase(train_output, test_output)
else:
out = test_output
return out
def compute_output_shape(self, input_shape):
return input_shape[:2] + (self.units,)
def compute_mask(self, input, mask=None):
if mask is not None and self.learn_mode == 'join':
return K.any(mask, axis=1)
return mask
def get_config(self):
config = {'units': self.units,
'learn_mode': self.learn_mode,
'test_mode': self.test_mode,
'use_boundary': self.use_boundary,
'use_bias': self.use_bias,
'sparse_target': self.sparse_target,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'chain_initializer': initializers.serialize(self.chain_initializer),
'boundary_initializer': initializers.serialize(self.boundary_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'activation': activations.serialize(self.activation),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'chain_regularizer': regularizers.serialize(self.chain_regularizer),
'boundary_regularizer': regularizers.serialize(self.boundary_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'chain_constraint': constraints.serialize(self.chain_constraint),
'boundary_constraint': constraints.serialize(self.boundary_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'input_dim': self.input_dim,
'unroll': self.unroll}
base_config = super(CRF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@property
def loss_function(self):
if self.learn_mode == 'join':
def loss(y_true, y_pred):
assert self._inbound_nodes, 'CRF has not connected to any layer.'
assert not self._outbound_nodes, 'When learn_model="join", CRF must be the last layer.'
if self.sparse_target:
y_true = K.one_hot(K.cast(y_true[:, :, 0], 'int32'), self.units)
X = self._inbound_nodes[0].input_tensors[0]
mask = self._inbound_nodes[0].input_masks[0]
nloglik = self.get_negative_log_likelihood(y_true, X, mask)
return nloglik
return loss
else:
if self.sparse_target:
return sparse_categorical_crossentropy
else:
return categorical_crossentropy
@property
def accuracy(self):
if self.test_mode == 'viterbi':
return self.viterbi_acc
else:
return self.marginal_acc
@staticmethod
def _get_accuracy(y_true, y_pred, mask, sparse_target=False):
y_pred = K.argmax(y_pred, -1)
if sparse_target:
y_true = K.cast(y_true[:, :, 0], K.dtype(y_pred))
else:
y_true = K.argmax(y_true, -1)
judge = K.cast(K.equal(y_pred, y_true), K.floatx())
if mask is None:
return K.mean(judge)
else:
mask = K.cast(mask, K.floatx())
return K.sum(judge * mask) / K.sum(mask)
@property
def viterbi_acc(self):
def acc(y_true, y_pred):
X = self._inbound_nodes[0].input_tensors[0]
mask = self._inbound_nodes[0].input_masks[0]
y_pred = self.viterbi_decoding(X, mask)
return self._get_accuracy(y_true, y_pred, mask, self.sparse_target)
acc.func_name = 'viterbi_acc'
return acc
@property
def marginal_acc(self):
def acc(y_true, y_pred):
X = self._inbound_nodes[0].input_tensors[0]
mask = self._inbound_nodes[0].input_masks[0]
y_pred = self.get_marginal_prob(X, mask)
return self._get_accuracy(y_true, y_pred, mask, self.sparse_target)
acc.func_name = 'marginal_acc'
return acc
@staticmethod
def softmaxNd(x, axis=-1):
m = K.max(x, axis=axis, keepdims=True)
exp_x = K.exp(x - m)
prob_x = exp_x / K.sum(exp_x, axis=axis, keepdims=True)
return prob_x
@staticmethod
def shift_left(x, offset=1):
assert offset > 0
return K.concatenate([x[:, offset:], K.zeros_like(x[:, :offset])], axis=1)
@staticmethod
def shift_right(x, offset=1):
assert offset > 0
return K.concatenate([K.zeros_like(x[:, :offset]), x[:, :-offset]], axis=1)
def add_boundary_energy(self, energy, mask, start, end):
start = K.expand_dims(K.expand_dims(start, 0), 0)
end = K.expand_dims(K.expand_dims(end, 0), 0)
if mask is None:
energy = K.concatenate([energy[:, :1, :] + start, energy[:, 1:, :]], axis=1)
energy = K.concatenate([energy[:, :-1, :], energy[:, -1:, :] + end], axis=1)
else:
mask = K.expand_dims(K.cast(mask, K.floatx()))
start_mask = K.cast(K.greater(mask, self.shift_right(mask)), K.floatx())
end_mask = K.cast(K.greater(self.shift_left(mask), mask), K.floatx())
energy = energy + start_mask * start
energy = energy + end_mask * end
return energy
def get_log_normalization_constant(self, input_energy, mask, **kwargs):
"""Compute logarithm of the normalization constant Z, where
Z = sum exp(-E) -> logZ = log sum exp(-E) =: -nlogZ
"""
# should have logZ[:, i] == logZ[:, j] for any i, j
logZ = self.recursion(input_energy, mask, return_sequences=False, **kwargs)
return logZ[:, 0]
def get_energy(self, y_true, input_energy, mask):
"""Energy = a1' y1 + u1' y1 + y1' U y2 + u2' y2 + y2' U y3 + u3' y3 + an' y3
"""
input_energy = K.sum(input_energy * y_true, 2) # (B, T)
chain_energy = K.sum(K.dot(y_true[:, :-1, :], self.chain_kernel) * y_true[:, 1:, :], 2) # (B, T-1)
if mask is not None:
mask = K.cast(mask, K.floatx())
chain_mask = mask[:, :-1] * mask[:, 1:] # (B, T-1), mask[:,:-1]*mask[:,1:] makes it work with any padding
input_energy = input_energy * mask
chain_energy = chain_energy * chain_mask
total_energy = K.sum(input_energy, -1) + K.sum(chain_energy, -1) # (B, )
return total_energy
def get_negative_log_likelihood(self, y_true, X, mask):
"""Compute the loss, i.e., negative log likelihood (normalize by number of time steps)
likelihood = 1/Z * exp(-E) -> neg_log_like = - log(1/Z * exp(-E)) = logZ + E
"""
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary)
energy = self.get_energy(y_true, input_energy, mask)
logZ = self.get_log_normalization_constant(input_energy, mask, input_length=K.int_shape(X)[1])
nloglik = logZ + energy
if mask is not None:
nloglik = nloglik / K.sum(K.cast(mask, K.floatx()), 1)
else:
nloglik = nloglik / K.cast(K.shape(X)[1], K.floatx())
return nloglik
def step(self, input_energy_t, states, return_logZ=True):
# not in the following `prev_target_val` has shape = (B, F)
# where B = batch_size, F = output feature dim
# Note: `i` is of float32, due to the behavior of `K.rnn`
prev_target_val, i, chain_energy = states[:3]
t = K.cast(i[0, 0], dtype='int32')
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.tf.slice(states[3], [0, t], [-1, 2])
input_energy_t = input_energy_t * K.expand_dims(m[:, 0])
chain_energy = chain_energy * K.expand_dims(K.expand_dims(m[:, 0] * m[:, 1])) # (1, F, F)*(B, 1, 1) -> (B, F, F)
if return_logZ:
energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2) # shapes: (1, B, F) + (B, F, 1) -> (B, F, F)
new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)
return new_target_val, [new_target_val, i + 1]
else:
energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)
min_energy = K.min(energy, 1)
argmin_table = K.cast(K.argmin(energy, 1), K.floatx()) # cast for tf-version `K.rnn`
return argmin_table, [min_energy, i + 1]
def recursion(self, input_energy, mask=None, go_backwards=False, return_sequences=True, return_logZ=True, input_length=None):
"""Forward (alpha) or backward (beta) recursion
If `return_logZ = True`, compute the logZ, the normalization constant:
\[ Z = \sum_{y1, y2, y3} exp(-E) # energy
= \sum_{y1, y2, y3} exp(-(u1' y1 + y1' W y2 + u2' y2 + y2' W y3 + u3' y3))
= sum_{y2, y3} (exp(-(u2' y2 + y2' W y3 + u3' y3)) sum_{y1} exp(-(u1' y1' + y1' W y2))) \]
Denote:
\[ S(y2) := sum_{y1} exp(-(u1' y1 + y1' W y2)), \]
\[ Z = sum_{y2, y3} exp(log S(y2) - (u2' y2 + y2' W y3 + u3' y3)) \]
\[ logS(y2) = log S(y2) = log_sum_exp(-(u1' y1' + y1' W y2)) \]
Note that:
yi's are one-hot vectors
u1, u3: boundary energies have been merged
If `return_logZ = False`, compute the Viterbi's best path lookup table.
"""
chain_energy = self.chain_kernel
chain_energy = K.expand_dims(chain_energy, 0) # shape=(1, F, F): F=num of output features. 1st F is for t-1, 2nd F for t
prev_target_val = K.zeros_like(input_energy[:, 0, :]) # shape=(B, F), dtype=float32
if go_backwards:
input_energy = K.reverse(input_energy, 1)
if mask is not None:
mask = K.reverse(mask, 1)
initial_states = [prev_target_val, K.zeros_like(prev_target_val[:, :1])]
constants = [chain_energy]
if mask is not None:
mask2 = K.cast(K.concatenate([mask, K.zeros_like(mask[:, :1])], axis=1), K.floatx())
constants.append(mask2)
def _step(input_energy_i, states):
return self.step(input_energy_i, states, return_logZ)
target_val_last, target_val_seq, _ = K.rnn(_step, input_energy, initial_states, constants=constants,
input_length=input_length, unroll=self.unroll)
if return_sequences:
if go_backwards:
target_val_seq = K.reverse(target_val_seq, 1)
return target_val_seq
else:
return target_val_last
def forward_recursion(self, input_energy, **kwargs):
return self.recursion(input_energy, **kwargs)
def backward_recursion(self, input_energy, **kwargs):
return self.recursion(input_energy, go_backwards=True, **kwargs)
def get_marginal_prob(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary)
input_length = K.int_shape(X)[1]
alpha = self.forward_recursion(input_energy, mask=mask, input_length=input_length)
beta = self.backward_recursion(input_energy, mask=mask, input_length=input_length)
if mask is not None:
input_energy = input_energy * K.expand_dims(K.cast(mask, K.floatx()))
margin = -(self.shift_right(alpha) + input_energy + self.shift_left(beta))
return self.softmaxNd(margin)
def viterbi_decoding(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary)
argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
argmin_tables = K.cast(argmin_tables, 'int32')
# backward to find best path, `initial_best_idx` can be any, as all elements in the last argmin_table are the same
argmin_tables = K.reverse(argmin_tables, 1)
initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])] # matrix instead of vector is required by tf `K.rnn`
if K.backend() == 'theano':
initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]
def gather_each_row(params, indices):
n = K.shape(indices)[0]
if K.backend() == 'theano':
return params[K.T.arange(n), indices]
else:
indices = K.transpose(K.stack([K.tf.range(n), indices]))
return K.tf.gather_nd(params, indices)
def find_path(argmin_table, best_idx):
next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
next_best_idx = K.expand_dims(next_best_idx)
if K.backend() == 'theano':
next_best_idx = K.T.unbroadcast(next_best_idx, 1)
return next_best_idx, [next_best_idx]
_, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx, input_length=K.int_shape(X)[1], unroll=self.unroll)
best_paths = K.reverse(best_paths, 1)
best_paths = K.squeeze(best_paths, 2)
return K.one_hot(best_paths, self.units)