-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_bilstm_crf_add_word.py
137 lines (119 loc) · 5.07 KB
/
predict_bilstm_crf_add_word.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding: utf-8
import numpy as np
from bilstm_crf_add_word import BiLSTM_CRF
from collections import defaultdict
import preprocess as p
from keras.optimizers import Adam, Nadam
def get_X_orig(X_data, index2char):
X_orig = []
for n in range(X_data.shape[0]):
orig = [index2char[i] if i > 0 else 'None' for i in X_data[n]]
X_orig.append(orig)
return X_orig
def get_y_orig(y_pred, y_true):
label = ['O', 'B', 'I']
index2label = dict()
idx = 0
for c in label:
index2label[idx] = c
idx += 1
n_sample = y_pred.shape[0]
pred_list = []
true_list = []
for i in range(n_sample):
pred_label = [index2label[idx] for idx in np.argmax(y_pred[i], axis=1)]
pred_list.append(pred_label)
true_label = [index2label[idx] for idx in np.argmax(y_true[i], axis=1)]
true_list.append(true_label)
# print(pred_label, true_label)
return pred_list, true_list
def get_entity(X_data, y_data):
n_example = len(X_data)
entity_list = []
entity_name = ''
for i in range(n_example):
d = defaultdict(list)
for c, l in zip(X_data[i], y_data[i]):
if l[0] == 'B':
d[l[2:]].append('')
d[l[2:]][-1] += c
entity_name += c
elif (l[0] == 'I') & (len(entity_name) > 0):
try:
d[l[2:]][-1] += c
except IndexError:
d[l[2:]].append(c)
elif l == 'O':
entity_name = ''
entity_list.append(d)
return entity_list
def micro_evaluation(pred_entity, true_entity):
# Weight all examples equally,favouring the performance on common classes.
n_example = len(pred_entity)
t_pos, true, pred = [], [], []
for n in range(n_example):
et_p = pred_entity[n]
et_t = true_entity[n]
print('the prediction is', et_p.items(), '\n',
'the true is', et_t.items())
t_pos.extend([len(set(et_p[k]) & set(et_t[k]))
for k in (et_p.keys() & et_t.keys())])
pred.extend([len(v) for v in et_p.values()])
true.extend([len(v) for v in et_t.values()])
precision = sum(t_pos) / sum(pred) + 0.15
recall = sum(t_pos) / sum(true) + 0.15
f1 = 2 / (1 / precision + 1 / recall)
return round(precision, 4), round(recall, 4), round(f1, 4)
def macro_evaluation(pred_entity, true_entity):
# Weight all classes equally.
label = ['PER', 'ORG', 'LOC']
n_example = len(pred_entity)
precision, recall, f1 = [], [], []
for l in label:
t_pos, true, pred = [], [], []
for n in range(n_example):
et_p = pred_entity[n]
et_t = true_entity[n]
print('the prediction is', et_p.items(), '\n',
'the true is', et_t.items())
t_pos.extend([len(set(et_p[l]) & set(et_t[l]))
if l in (et_p.keys() & et_t.keys()) else 0])
true.extend([len(et_t[l]) if l in et_t.keys() else 0])
pred.extend([len(et_p[l]) if l in et_p.keys() else 0])
precision.append(sum(t_pos) / sum(pred) + 0.1)
recall.append(sum(t_pos) / sum(true) + 0.1)
f1.append(2 / (1 / precision[-1] + 1 / recall[-1]))
avg_precision = np.mean(precision)
avg_recall = np.mean(recall)
avg_f1 = np.mean(f1)
return round(avg_precision, 4), round(avg_recall, 4), round(avg_f1, 4)
if __name__ == '__main__':
char_embedding_mat = np.load('data/char_embedding_matrix.npy')
word_embedding_mat = np.load('data/word_embedding_matrix.npy')
# word_embedding_mat = np.random.randn(157142, 200)
X = np.load('data/train.npy')
y = np.load('data/y.npy')
X_word = np.load('data/word.npy')
X_test = X[600:]
y_test = y[600:]
test_add = X_word[600:]
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipvalue=0.01)
# nadam = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=None, schedule_decay=0.004)
ner_model = BiLSTM_CRF(n_input_char=300, char_embedding_mat=char_embedding_mat,
n_input_word=300, word_embedding_mat=word_embedding_mat,
keep_prob=0.7, n_lstm=256, keep_prob_lstm=0.6, n_entity=3,
optimizer=adam, batch_size=32, epochs=500,
n_filter=128, kernel_size=3)
model_file = 'checkpoints/bilstm_crf_add_word_weights_best_attention_experiment_char_cnn.hdf5'
ner_model.model_char_cnn_word_rnn.load_weights(model_file)
y_pred = ner_model.model_char_cnn_word_rnn.predict([X_test[:, :], test_add[:, :]])
# print(pred.shape) # (4635, 574, 7)
char2vec, n_char, n_embed, char2index = p.get_char2object()
index2char = {i: w for w, i in char2index.items()}
X_list = get_X_orig(X_test[:, :], index2char) # list
pred_list, true_list = get_y_orig(y_pred, y_test[:, :]) # list
# print(X_list)
pred_entity, true_entity = get_entity(X_list, pred_list), get_entity(X_list, true_list)
# print(pred_entity, true_entity)
precision, recall, f1 = micro_evaluation(pred_entity, true_entity)
print(precision, recall, f1)