@@ -1198,7 +1198,7 @@ A & 20 & 1 & 5 & 6 \\
1198
1198
<br >
1199
1199
1200
1200
1201
- ## 🧠 Relation to Algorithms
1201
+ ## 🧠 [ Relation to Algorithms] ( )
1202
1202
1203
1203
The transportation problem is a special type of ** Linear Programming** that can be solved with:
1204
1204
@@ -1214,11 +1214,11 @@ These specialized algorithms are **faster** and **simpler** due to the regular s
1214
1214
<br >
1215
1215
1216
1216
1217
- ## 📈 Transportation Algorithm & Simplex Connection:
1217
+ ## 📈 [ Transportation Algorithm & Simplex Connection] ( ) :
1218
1218
1219
1219
The transportation algorithm follows the ** same logic as the Simplex method** , but with ** simplifications** tailored to the structure of transportation problems:
1220
1220
1221
- ### 🔹 1st Phase: Initial Basic Feasible Solution
1221
+ ### 🔹 [ 1st Phase] ( ) : Initial Basic Feasible Solution
1222
1222
1223
1223
We will use two methods to find a basic solution:
1224
1224
@@ -1229,7 +1229,7 @@ These provide starting points for optimization.
1229
1229
1230
1230
<br >
1231
1231
1232
- ### 🔹 2nd Phase: Optimality Check:
1232
+ ### 🔹 [ 2nd Phase] ( ) : Optimality Check:
1233
1233
1234
1234
After obtaining a feasible solution, we check for optimality using methods like:
1235
1235
@@ -1241,13 +1241,13 @@ These determine whether cost can be further reduced by adjusting flows along loo
1241
1241
<br >
1242
1242
1243
1243
1244
- ## 🧭 Northwest Corner Method (Método do Canto Noroeste)
1244
+ ## 🧭 [ Northwest Corner Method (Método do Canto Noroeste] ( )
1245
1245
1246
1246
This is a method to generate an initial feasible solution without considering transportation costs.
1247
1247
1248
1248
<br >
1249
1249
1250
- ### ➢ Steps:
1250
+ ### ➢ [ Steps] ( ) :
1251
1251
1252
1252
1 . ** Start in the top-left (northwest) corner** of the transportation table.
1253
1253
- This is always cell $begin:math: text $ x_ {11} $end:math: text $.
0 commit comments