-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.jl
58 lines (49 loc) · 1.54 KB
/
main.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# # Quantum Circuit Born Machine
using Yao
using Yao.EasyBuild: variational_circuit
using Yao.BitBasis
import Yao: probs
import Optimisers
include("stats.jl")
include("kernel_mmd.jl")
struct QCBM{BT<:AbstractBlock, MT<:MMD}
circuit::BT
mmd::MT
end
"""generated output probability distribution"""
function probs(qcbm::QCBM)
zero_state(qcbm.circuit |> nqubits) |> qcbm.circuit |> probs
end
function loss(qcbm::QCBM)
expect(qcbm.mmd, probs(qcbm) |> as_weights)
end
function getgrad(qcbm::QCBM)
expect'(qcbm.mmd, zero_state(nqubits(qcbm.circuit))=>qcbm.circuit).second
end
# ## DATA: Target Probability Distribution
# The gaussian probability disctribution in phase space of 2^6
nbit = 6
N = 1<<nbit
function gaussian_pdf(x, μ::Real, σ::Real)
pl = @. 1 / sqrt(2pi * σ^2) * exp(-(x - μ)^2 / (2 * σ^2))
pl / sum(pl)
end
pg = gaussian_pdf(1:N, N/2-0.5, N/4);
# ## MODEL: Quantum Circuit and Loss
# Using a random differentiable circuit of depth 6 for training, the kernel function is universal RBF kernel
depth = 6
kernel = rbf_kernel(0.25)
c = variational_circuit(Float64, nbit, depth, Yao.EasyBuild.pair_ring(nbit))
dispatch!(c, :random)
qcbm = QCBM(c, MMD(kernel, pg))
# ## TRAINING: Adam Optimizer
# We probide the QCBMGo! iterative interface for training
niter = 100
params = parameters(qcbm.circuit)
optim = Optimisers.setup(Optimisers.ADAM(0.1), params)
for i=1:niter
# initialize the parameters
Optimisers.update!(optim, params, getgrad(qcbm))
dispatch!(qcbm.circuit, params)
println("Step = $i, Loss = $(loss(qcbm))")
end