Skip to content

QuentinFuxa/WhisperLiveKit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

WhisperLiveKit

WhisperLiveKit Demo

Real-time, Fully Local Speech-to-Text with Speaker Diarization

PyPI Version PyPI Downloads Python Versions License

Overview

This project is based on WhisperStreaming and SimulStreaming, allowing you to transcribe audio directly from your browser. WhisperLiveKit provides a complete backend solution for real-time speech transcription with a functional, simple and customizable frontend. Everything runs locally on your machine โœจ

Architecture

WhisperLiveKit consists of three main components:

  • Frontend: A basic html + JS interface that captures microphone audio and streams it to the backend via WebSockets. You can use and adapt the provided template.
  • Backend (Web Server): A FastAPI-based WebSocket server that receives streamed audio data, processes it in real time, and returns transcriptions to the frontend. This is where the WebSocket logic and routing live.
  • Core Backend (Library Logic): A server-agnostic core that handles audio processing, ASR, and diarization. It exposes reusable components that take in audio bytes and return transcriptions.

Key Features

  • Real-time Transcription - Locally (or on-prem) convert speech to text instantly as you speak
  • Speaker Diarization - Identify different speakers in real-time using Diart
  • Multi-User Support - Handle multiple users simultaneously with a single backend/server
  • Automatic Silence Chunking โ€“ Automatically chunks when no audio is detected to limit buffer size
  • Confidence Validation โ€“ Immediately validate high-confidence tokens for faster inference (WhisperStreaming only)
  • Buffering Preview โ€“ Displays unvalidated transcription segments (not compatible with SimulStreaming yet)
  • Punctuation-Based Speaker Splitting [BETA] - Align speaker changes with natural sentence boundaries for more readable transcripts
  • SimulStreaming Backend - Dual-licensed - Ultra-low latency transcription using SOTA AlignAtt policy.

Quick Start

# Install the package
pip install whisperlivekit

# Start the transcription server
whisperlivekit-server --model tiny.en

# Open your browser at http://localhost:8000 to see the interface.
# Use  -ssl-certfile public.crt --ssl-keyfile private.key parameters to use SSL

That's it! Start speaking and watch your words appear on screen.

Installation

#Install from PyPI (Recommended)
pip install whisperlivekit

#Install from Source
git clone https://github.com/QuentinFuxa/WhisperLiveKit
cd WhisperLiveKit
pip install -e .

FFmpeg Dependency

# Ubuntu/Debian
sudo apt install ffmpeg

# macOS
brew install ffmpeg

# Windows
# Download from https://ffmpeg.org/download.html and add to PATH

Optional Dependencies

# Voice Activity Controller (prevents hallucinations)
pip install torch

# Sentence-based buffer trimming
pip install mosestokenizer wtpsplit
pip install tokenize_uk  # If you work with Ukrainian text

# Speaker diarization
pip install diart

# Alternative Whisper backends (default is faster-whisper)
pip install whisperlivekit[whisper]              # Original Whisper
pip install whisperlivekit[whisper-timestamped]  # Improved timestamps
pip install whisperlivekit[mlx-whisper]          # Apple Silicon optimization
pip install whisperlivekit[openai]               # OpenAI API
pip install whisperlivekit[simulstreaming]

๐ŸŽน Pyannote Models Setup

For diarization, you need access to pyannote.audio models:

  1. Accept user conditions for the pyannote/segmentation model
  2. Accept user conditions for the pyannote/segmentation-3.0 model
  3. Accept user conditions for the pyannote/embedding model
  4. Login with HuggingFace:
pip install huggingface_hub
huggingface-cli login

๐Ÿ’ป Usage Examples

Command-line Interface

Start the transcription server with various options:

# Basic server with English model
whisperlivekit-server --model tiny.en

# Advanced configuration with diarization
whisperlivekit-server --host 0.0.0.0 --port 8000 --model medium --diarization --language auto

# SimulStreaming backend for ultra-low latency
whisperlivekit-server --backend simulstreaming --model large-v3 --frame-threshold 20

Python API Integration (Backend)

Check basic_server.py for a complete example.

from whisperlivekit import TranscriptionEngine, AudioProcessor, parse_args
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
import asyncio

transcription_engine = None

@asynccontextmanager
async def lifespan(app: FastAPI):
    global transcription_engine
    transcription_engine = TranscriptionEngine(model="medium", diarization=True, lan="en")
    # You can also load from command-line arguments using parse_args()
    # args = parse_args()
    # transcription_engine = TranscriptionEngine(**vars(args))
    yield

app = FastAPI(lifespan=lifespan)

# Process WebSocket connections
async def handle_websocket_results(websocket: WebSocket, results_generator):
    async for response in results_generator:
        await websocket.send_json(response)
    await websocket.send_json({"type": "ready_to_stop"})

@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
    global transcription_engine

    # Create a new AudioProcessor for each connection, passing the shared engine
    audio_processor = AudioProcessor(transcription_engine=transcription_engine)    
    results_generator = await audio_processor.create_tasks()
    results_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
    await websocket.accept()
    while True:
        message = await websocket.receive_bytes()
        await audio_processor.process_audio(message)        

Frontend Implementation

The package includes a simple HTML/JavaScript implementation that you can adapt for your project. You can find it here, or load its content using get_web_interface_html() :

from whisperlivekit import get_web_interface_html
html_content = get_web_interface_html()

โš™๏ธ Configuration Reference

WhisperLiveKit offers extensive configuration options:

Parameter Description Default
--host Server host address localhost
--port Server port 8000
--model Whisper model size. Caution : '.en' models do not work with Simulstreaming tiny
--language Source language code or auto en
--task transcribe or translate transcribe
--backend Processing backend faster-whisper
--diarization Enable speaker identification False
--punctuation-split Use punctuation to improve speaker boundaries True
--confidence-validation Use confidence scores for faster validation False
--min-chunk-size Minimum audio chunk size (seconds) 1.0
--vac Use Voice Activity Controller False
--no-vad Disable Voice Activity Detection False
--buffer_trimming Buffer trimming strategy (sentence or segment) segment
--warmup-file Audio file path for model warmup jfk.wav
--ssl-certfile Path to the SSL certificate file (for HTTPS support) None
--ssl-keyfile Path to the SSL private key file (for HTTPS support) None
--segmentation-model Hugging Face model ID for pyannote.audio segmentation model. Available models pyannote/segmentation-3.0
--embedding-model Hugging Face model ID for pyannote.audio embedding model. Available models speechbrain/spkrec-ecapa-voxceleb

SimulStreaming-specific Options:

Parameter Description Default
--frame-threshold AlignAtt frame threshold (lower = faster, higher = more accurate) 25
--beams Number of beams for beam search (1 = greedy decoding) 1
--decoder Force decoder type (beam or greedy) auto
--audio-max-len Maximum audio buffer length (seconds) 30.0
--audio-min-len Minimum audio length to process (seconds) 0.0
--cif-ckpt-path Path to CIF model for word boundary detection None
--never-fire Never truncate incomplete words False
--init-prompt Initial prompt for the model None
--static-init-prompt Static prompt that doesn't scroll None
--max-context-tokens Maximum context tokens None
--model-path Direct path to .pt model file. Download it if not found ./base.pt

๐Ÿ”ง How It Works

  1. Audio Capture: Browser's MediaRecorder API captures audio in webm/opus format
  2. Streaming: Audio chunks are sent to the server via WebSocket
  3. Processing: Server decodes audio with FFmpeg and streams into the model for transcription
  4. Real-time Output: Partial transcriptions appear immediately in light gray (the 'aperรงu') and finalized text appears in normal color

๐Ÿš€ Deployment Guide

To deploy WhisperLiveKit in production:

  1. Server Setup (Backend):

    # Install production ASGI server
    pip install uvicorn gunicorn
    
    # Launch with multiple workers
    gunicorn -k uvicorn.workers.UvicornWorker -w 4 your_app:app
  2. Frontend Integration:

    • Host your customized version of the example HTML/JS in your web application
    • Ensure WebSocket connection points to your server's address
  3. Nginx Configuration (recommended for production):

   server {
       listen 80;
       server_name your-domain.com;

    location / {
        proxy_pass http://localhost:8000;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "upgrade";
        proxy_set_header Host $host;
    }}

4. **HTTPS Support**: For secure deployments, use "wss://" instead of "ws://" in WebSocket URL

### ๐Ÿ‹ Docker

A basic Dockerfile is provided which allows re-use of Python package installation options. โš ๏ธ For **large** models, ensure that your **docker runtime** has enough **memory** available. See below usage examples:


#### All defaults
- Create a reusable image with only the basics and then run as a named container:
```bash
docker build -t whisperlivekit-defaults .
docker create --gpus all --name whisperlivekit -p 8000:8000 whisperlivekit-defaults
docker start -i whisperlivekit

Note: If you're running on a system without NVIDIA GPU support (such as Mac with Apple Silicon or any system without CUDA capabilities), you need to remove the --gpus all flag from the docker create command. Without GPU acceleration, transcription will use CPU only, which may be significantly slower. Consider using small models for better performance on CPU-only systems.

Customization

  • Customize the container options:
docker build -t whisperlivekit-defaults .
docker create --gpus all --name whisperlivekit-base -p 8000:8000 whisperlivekit-defaults --model base
docker start -i whisperlivekit-base
  • --build-arg Options:
    • EXTRAS="whisper-timestamped" - Add extras to the image's installation (no spaces). Remember to set necessary container options!
    • HF_PRECACHE_DIR="./.cache/" - Pre-load a model cache for faster first-time start
    • HF_TKN_FILE="./token" - Add your Hugging Face Hub access token to download gated models

๐Ÿ”ฎ Use Cases

Capture discussions in real-time for meeting transcription, help hearing-impaired users follow conversations through accessibility tools, transcribe podcasts or videos automatically for content creation, transcribe support calls with speaker identification for customer service...

๐Ÿ™ Acknowledgments

We extend our gratitude to the original authors of:

Whisper Streaming SimulStreaming Diart OpenAI Whisper

About

Python package for Real-time, Local Speech-to-Text and Speaker Diarization. FastAPI Server & Web Interface

Resources

License

Stars

Watchers

Forks

Packages

No packages published