forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_autoprune.py
96 lines (89 loc) · 3.43 KB
/
test_autoprune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle
from paddleslim.prune import Pruner
from paddleslim.prune import AutoPruner
from static_case import StaticCase
from layers import conv_bn_layer
class TestPrune(StaticCase):
def test_prune(self):
main_program = paddle.static.Program()
startup_program = paddle.static.Program()
# X X O X O
# conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
# | ^ | ^
# |____________| |____________________|
#
# X: prune output channels
# O: prune input channels
with paddle.static.program_guard(main_program, startup_program):
input = paddle.static.data(name="image", shape=[None, 3, 16, 16])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
shapes = {}
params = []
for param in main_program.global_block().all_parameters():
shapes[param.name] = param.shape
if 'weights' in param.name:
params.append(param.name)
val_program = paddle.static.default_main_program().clone(for_test=True)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
scope = paddle.static.Scope()
exe.run(startup_program, scope=scope)
pruner = AutoPruner(
val_program,
paddle.static.global_scope(),
place,
params=params,
init_ratios=[0.33] * len(params),
pruned_flops=0.5,
pruned_latency=None,
server_addr=("", 0),
init_temperature=100,
reduce_rate=0.85,
max_try_times=300,
max_client_num=10,
search_steps=100,
max_ratios=0.9,
min_ratios=0.,
is_server=True,
key="auto_pruner")
baseratio = None
lastratio = None
for i in range(10):
pruned_program, pruned_val_program = pruner.prune(
paddle.static.default_main_program(), val_program)
score = 0.2
pruner.reward(score)
if i == 0:
baseratio = pruner._current_ratios
if i == 9:
lastratio = pruner._current_ratios
changed = False
for i in range(len(baseratio)):
if baseratio[i] != lastratio[i]:
changed = True
self.assertTrue(changed == True)
if __name__ == '__main__':
unittest.main()