forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sensitivity.py
121 lines (106 loc) · 4.49 KB
/
test_sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import numpy
import paddle
from static_case import StaticCase
from paddleslim.prune import sensitivity, merge_sensitive, load_sensitivities, get_ratios_by_loss
from layers import conv_bn_layer
class TestSensitivity(StaticCase):
def test_sensitivity(self):
main_program = paddle.static.Program()
startup_program = paddle.static.Program()
with paddle.static.program_guard(main_program, startup_program):
input = paddle.static.data(name="image", shape=[None, 1, 28, 28])
label = paddle.static.data(
name="label", shape=[None, 1], dtype="int64")
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
out = paddle.static.nn.fc(conv6, 10, activation='softmax')
acc_top1 = paddle.static.accuracy(input=out, label=label, k=1)
eval_program = main_program.clone(for_test=True)
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
exe.run(startup_program)
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
def eval_func(program):
acc_set = []
for data in val_reader():
acc_np = exe.run(
program=program,
feed={"image": data[0],
"label": data[1]},
fetch_list=[acc_top1])
acc_set.append(float(acc_np[0]))
acc_val_mean = numpy.array(acc_set).mean()
print("acc_val_mean: {}".format(acc_val_mean))
return acc_val_mean
def eval_func_for_args(program, feed_list):
acc_set = []
for data in val_reader():
acc_np = exe.run(
program=program,
feed={"image": data[0],
"label": data[1]},
fetch_list=[acc_top1])
acc_set.append(float(acc_np[0]))
acc_val_mean = numpy.array(acc_set).mean()
print("acc_val_mean: {}".format(acc_val_mean))
return acc_val_mean
sensitivity(
eval_program,
place, ["conv4_weights"],
eval_func,
sensitivities_file="./sensitivities_file_0",
pruned_ratios=[0.1, 0.2])
sensitivity(
eval_program,
place, ["conv4_weights"],
eval_func,
sensitivities_file="./sensitivities_file_1",
pruned_ratios=[0.3, 0.4])
params_sens = sensitivity(
eval_program,
place, ["conv4_weights"],
eval_func_for_args,
eval_args=[['image', 'label']],
sensitivities_file="./sensitivites_file_params",
pruned_ratios=[0.1, 0.2, 0.3, 0.4])
sens_0 = load_sensitivities('./sensitivities_file_0')
sens_1 = load_sensitivities('./sensitivities_file_1')
sens = merge_sensitive([sens_0, sens_1])
origin_sens = sensitivity(
eval_program,
place, ["conv4_weights"],
eval_func,
sensitivities_file="./sensitivities_file_2",
pruned_ratios=[0.1, 0.2, 0.3, 0.4])
self.assertTrue(params_sens == origin_sens)
self.assertTrue(sens == origin_sens)
loss = 0.0
ratios = get_ratios_by_loss(sens, loss)
self.assertTrue(len(ratios) == len(sens))
loss = min(list(sens.get('conv4_weights').values())) - 0.01
ratios = get_ratios_by_loss(sens, loss)
self.assertTrue(len(ratios) == len(sens))
if __name__ == '__main__':
unittest.main()