forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_unstructured_pruner_quant.py
68 lines (60 loc) · 2.77 KB
/
test_unstructured_pruner_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import sys
sys.path.append("../")
import unittest
from static_case import StaticCase
import paddle
from paddleslim.prune import UnstructuredPruner
from layers import conv_bn_layer
import numpy as np
class TestStaticMasks(StaticCase):
def _update_masks(self, pruner, t):
for param in pruner.masks:
mask_name = pruner.masks[param]
t_param = pruner.scope.find_var(param).get_tensor()
t_mask = pruner.scope.find_var(mask_name).get_tensor()
v_param = np.array(t_param)
v_mask = (np.abs(v_param) < t).astype(v_param.dtype)
t_mask.set(v_mask, pruner.place)
def test_set_static_masks(self):
main_program = paddle.static.default_main_program()
startup_program = paddle.static.default_startup_program()
with paddle.static.program_guard(main_program, startup_program):
input = paddle.static.data(name='image', shape=[None, 3, 16, 16])
label = paddle.static.data(
name='label', shape=[None, 1], dtype='int64')
conv1 = conv_bn_layer(input, 8, 1, "conv1")
conv2 = conv_bn_layer(conv1, 8, 1, "conv2")
conv3 = paddle.static.nn.conv2d_transpose(
input=conv2, num_filters=16, filter_size=2, stride=2)
predict = paddle.static.nn.fc(conv3, 10, activation='softmax')
cost = paddle.nn.functional.cross_entropy(
input=predict, label=label)
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
avg_cost = paddle.mean(x=cost)
adam_optimizer.minimize(avg_cost)
place = paddle.static.cpu_places()[0]
exe = paddle.static.Executor(place)
scope = paddle.static.global_scope()
exe.run(startup_program, scope=scope)
pruner = UnstructuredPruner(
main_program, 'ratio', scope=scope, place=place)
self._update_masks(pruner, 0.0)
pruner.update_params()
self._update_masks(pruner, 1.0)
pruner.set_static_masks()
sparsity_0 = pruner.total_sparse(main_program)
x = np.random.random(size=(10, 3, 16, 16)).astype('float32')
label = np.random.random(size=(10, 1)).astype('int64')
loss_data, = exe.run(main_program,
feed={"image": x,
"label": label},
fetch_list=[cost.name])
sparsity_1 = UnstructuredPruner.total_sparse(main_program)
pruner.update_params()
sparsity_2 = UnstructuredPruner.total_sparse(main_program)
print(sparsity_0, sparsity_1, sparsity_2)
self.assertEqual(sparsity_0, 1.0)
self.assertLess(abs(sparsity_2 - 1), 0.001)
self.assertLess(sparsity_1, 1.0)
if __name__ == '__main__':
unittest.main()