Skip to content

Commit 2ca0f48

Browse files
committed
update download link
1 parent fbc4c14 commit 2ca0f48

File tree

1 file changed

+10
-12
lines changed

1 file changed

+10
-12
lines changed

README.md

+10-12
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,7 @@
2020
* [2021.02.03] Support [EfficientNet-Lite](https://github.com/RangiLyu/EfficientNet-Lite) and [Rep-VGG](https://github.com/DingXiaoH/RepVGG) backbone. Please check the [config folder](config/). Download models in [Model Zoo](#model-zoo)
2121

2222
* [2021.01.10] **NanoDet-g** with lower memory access cost, which designed for edge NPU or GPU, is now available!
23-
Check [config/nanodet-g.yml](config/nanodet-g.yml) and download:
24-
[COCO pre-trained model(Google Drive)](https://drive.google.com/file/d/10uW7oqZKw231l_tr4C1bJWkbCXgBf7av/view?usp=sharing) | [(BaiduDisk百度网盘)](https://pan.baidu.com/s/1IJLdtLBvmQVOmzzNY_Ci5A) code:otcd
23+
Check [config/nanodet-g.yml](config/nanodet-g.yml) and download in [Model Zoo](#model-zoo).
2524

2625
<details>
2726
<summary>More...</summary>
@@ -93,9 +92,8 @@ Inference using [Alibaba's MNN framework](https://github.com/alibaba/MNN) is in
9392
### Pytorch demo
9493

9594
First, install requirements and setup NanoDet following installation guide. Then download COCO pretrain weight from here
96-
👉[COCO pretrain weight for torch>=1.6(Google Drive)](https://drive.google.com/file/d/1EhMqGozKfqEfw8y9ftbi1jhYu86XoW62/view?usp=sharing) | [(百度网盘)](https://pan.baidu.com/s/1LCnmj2Pqhv0tsDX__1j2gg) code:6au1
9795

98-
👉[COCO pretrain weight for torch<=1.5(Google Drive)](https://drive.google.com/file/d/10h-0qLMCgYvWQvKULqbkLvmirFR-w9NN/view?usp=sharing) | [(百度云盘)](https://pan.baidu.com/s/1OTcPiajCcqKLg3Q0vwho3A) code:topw
96+
👉[COCO pretrain weight (Google Drive)](https://drive.google.com/file/d/1ZkYucuLusJrCb_i63Lid0kYyyLvEiGN3/view?usp=sharing)
9997

10098
* Inference images
10199

@@ -166,14 +164,14 @@ NanoDet supports variety of backbones. Go to the [***config*** folder](config/)
166164

167165
Model | Backbone |Resolution|COCO mAP| FLOPS |Params | Pre-train weight |
168166
:--------------------:|:------------------:|:--------:|:------:|:-----:|:-----:|:-----:|
169-
NanoDet-m | ShuffleNetV2 1.0x | 320*320 | 20.6 | 0.72B | 0.95M | [Download](https://drive.google.com/file/d/10h-0qLMCgYvWQvKULqbkLvmirFR-w9NN/view?usp=sharing) |
170-
NanoDet-m-416 | ShuffleNetV2 1.0x | 416*416 | 23.5 | 1.2B | 0.95M | [Download](https://drive.google.com/file/d/1h6TBy1tx4faIBKHnYeg0QwzFF6wlFBEd/view?usp=sharing)|
171-
NanoDet-t (***NEW***) | ShuffleNetV2 1.0x | 320*320 | 21.7 | 0.96B | 1.36M | [Download](https://drive.google.com/file/d/1O2iz-aaDiQHJNfocInpFrY8ZFMrT3M1r/view?usp=sharing) |
172-
NanoDet-g | Custom CSP Net | 416*416 | 22.9 | 4.2B | 3.81M | [Download](https://drive.google.com/file/d/10uW7oqZKw231l_tr4C1bJWkbCXgBf7av/view?usp=sharing)|
173-
NanoDet-EfficientLite | EfficientNet-Lite0 | 320*320 | 24.7 | 1.72B | 3.11M | [Download](https://drive.google.com/file/d/1u_t9L0jqjH858gCR-vpzWzu9FexQOSmJ/view?usp=sharing)|
174-
NanoDet-EfficientLite | EfficientNet-Lite1 | 416*416 | 30.3 | 4.06B | 4.01M | [Download](https://drive.google.com/file/d/1y9z7BToAZOQ1pKbOjNjf79YMuFuDTvfq/view?usp=sharing) |
175-
NanoDet-EfficientLite | EfficientNet-Lite2 | 512*512 | 32.6 | 7.12B | 4.71M | [Download](https://drive.google.com/file/d/1UMXJJxRkRzgTvN1iRKeDZqGpkLxK3X4K/view?usp=sharing) |
176-
NanoDet-RepVGG | RepVGG-A0 | 416*416 | 27.8 | 11.3B | 6.75M | [Download](https://drive.google.com/file/d/1bsT9Ksxws2O3g_IUuUwp0QwZcJlqJw3S/view?usp=sharing) |
167+
NanoDet-m | ShuffleNetV2 1.0x | 320*320 | 20.6 | 0.72B | 0.95M | [Download](https://drive.google.com/file/d/1ZkYucuLusJrCb_i63Lid0kYyyLvEiGN3/view?usp=sharing) |
168+
NanoDet-m-416 | ShuffleNetV2 1.0x | 416*416 | 23.5 | 1.2B | 0.95M | [Download](https://drive.google.com/file/d/1jY-Um2VDDEhuVhluP9lE70rG83eXQYhV/view?usp=sharing)|
169+
NanoDet-t (***NEW***) | ShuffleNetV2 1.0x | 320*320 | 21.7 | 0.96B | 1.36M | [Download](https://drive.google.com/file/d/1TqRGZeOKVCb98ehTaE0gJEuND6jxwaqN/view?usp=sharing) |
170+
NanoDet-g | Custom CSP Net | 416*416 | 22.9 | 4.2B | 3.81M | [Download](https://drive.google.com/file/d/1f2lH7Ae1AY04g20zTZY7JS_dKKP37hvE/view?usp=sharing)|
171+
NanoDet-EfficientLite | EfficientNet-Lite0 | 320*320 | 24.7 | 1.72B | 3.11M | [Download](https://drive.google.com/file/d/1Dj1nBFc78GHDI9Wn8b3X4MTiIV2el8qP/view?usp=sharing)|
172+
NanoDet-EfficientLite | EfficientNet-Lite1 | 416*416 | 30.3 | 4.06B | 4.01M | [Download](https://drive.google.com/file/d/1ernkb_XhnKMPdCBBtUEdwxIIBF6UVnXq/view?usp=sharing) |
173+
NanoDet-EfficientLite | EfficientNet-Lite2 | 512*512 | 32.6 | 7.12B | 4.71M | [Download](https://drive.google.com/file/d/11V20AxXe6bTHyw3aMkgsZVzLOB31seoc/view?usp=sharing) |
174+
NanoDet-RepVGG | RepVGG-A0 | 416*416 | 27.8 | 11.3B | 6.75M | [Download](https://drive.google.com/file/d/1nWZZ1qXb1HuIXwPSYpEyFHHqX05GaFer/view?usp=sharing) |
177175

178176

179177
****

0 commit comments

Comments
 (0)