-
Notifications
You must be signed in to change notification settings - Fork 4
Open
Description
As a Node.js developer i'm using the redisai-js module to connect with Redis-Ai with my node.js application. So i'm using / save / load my models in TensorflowJs format (model.json, weights.bin) so its useful create the Redis-Ai model getting start from these two files saved. Actually the code i'm used doesn't work because the model format:
const m = await tf.loadLayersModel(`file://model/AX-model/model.json`)
const myModel = new redisai.Model(redisai.Backend.TF, 'CPU',['a','b'], ['c'], m)
const r = await aiclient.modelset('mlmodel', myModel)
So i'm interesting to thinking at a solution, in node.js application i'm struggle to use Redis to save the TensorflowJs models too directly in-memory db. I'd like to chose which operation get done in Node.js application and which in Redis-Ai, so for example train the model in Node.js application and predict in Redis-Ai:
const model = tf.sequential()
model.add(tf.layers.dense({inputShape: [1], units: 1}))
model.add(tf.layers.dense({units: 1}))
model.compile({
optimizer: 'sgd', // tf.train.adam(),
// loss: tf.losses.meanSquaredError,
loss: 'meanSquaredError',
metrics: ['mse']
})
const myModel = new redisai.Model(redisai.Backend.TF, 'CPU',['a','b'], ['c'], model)
const r = await aiclient.modelset('mlmodel', myModel)
Metadata
Metadata
Assignees
Labels
No labels