-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA-stability-no-lineal.py
309 lines (275 loc) · 7.41 KB
/
A-stability-no-lineal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 16 11:29:07 2024
@author: ricardo
"""
# =============================================================================
# El método de Euler aplicado a la ecuación
# $$v' = (a+2\bar{u})v + (a\bar{u} + \bar{u}^2)$$
# la cual resulta de linealizar la ecuación
# $$u' = au + u^2$$
# resulta estable cuando
# $$|1+k(a+2\bar{u})| \leq 1$$
# =============================================================================
import numpy as np
import matplotlib.pyplot as plt
plt.style.use(("seaborn-v0_8-darkgrid", "seaborn-v0_8-colorblind", "seaborn-v0_8-paper"))
plt.rcParams["legend.fancybox"] = True
plt.rcParams["legend.frameon"] = True
plt.rcParams["legend.shadow"] = True
from scipy.optimize import fsolve
from scipy.integrate import solve_ivp
import pandas as pd
N = 1001
x = np.linspace(-3,3,N)
y = np.linspace(-3,3,N)
x,y = np.meshgrid(x,y)
plano = x + y*1j
k = 1 # paso de tiempo
ubar = 0 # valor $\bar{u}$ cercano a la solución $u$
condicion = 1 + k * (plano + 2*ubar)
norma = np.sqrt( condicion.real**2 + condicion.imag**2 ) <= 1
plt.contourf(
x,
y,
norma,
levels=np.array([-1,0,1]),
cmap="Greys"
)
plt.axhline(0, color="k")
plt.axvline(0, color="k")
plt.colorbar()
plt.axis("equal")
plt.show()
ubars = np.array([0.5,0,-0.5,-1])
fig, axs = plt.subplots(2,2, figsize=(6,6))
for i in range(ubars.shape[0]):
u = ubars[i]
condicion = 1 + k * (plano + 2*u)
norma = np.sqrt( condicion.real**2 + condicion.imag**2 ) <= 1
ax = axs.flat[i]
ax.contourf(
x,
y,
norma,
levels=np.array([-1,0,1]),
cmap="Blues"
)
ax.axhline(0, color="k")
ax.axvline(0, color="k")
ax.axis("equal")
ax.set_title(r"$\bar{u}=$ %1.1f" %u)
ax.set_xlabel("real")
ax.set_ylabel("imag")
if u == 0.0:
ax.text(0.5,0.5,"$u'=au$")
for ax in axs.flat:
ax.label_outer()
# plt.savefig("figuras/A-Stability-dudt=au+u2-FE.pdf")
plt.show()
# =============================================================================
# Euler hacia atrás
#
# Aplicando BE al mismo problema resulta que el método es A-Estable cuando
# $$|1 - k(a+2\bar{u})| >= 1$$
# =============================================================================
ubars = np.array([1,0.5,0,-0.5])
fig, axs = plt.subplots(2,2, figsize=(6,6))
for i in range(ubars.shape[0]):
u = ubars[i]
condicion = 1 - k * (plano + 2*u)
norma = np.sqrt( condicion.real**2 + condicion.imag**2 ) >= 1
ax = axs.flat[i]
ax.contourf(
x,
y,
norma,
levels=np.array([-1,0,1]),
cmap="Blues"
)
ax.axhline(0, color="k")
ax.axvline(0, color="k")
ax.axis("equal")
ax.set_title(r"$\bar{u}=$ %1.1f" %u)
ax.set_xlabel("real")
ax.set_ylabel("imag")
if u == 0.0:
ax.text(0.5,0.5,"$u'=au$")
for ax in axs.flat:
ax.label_outer()
# plt.savefig("figuras/A-Stability-dudt=au+u2-BE.pdf")
plt.show()
# =============================================================================
# Crank-Nicolson
#
# Aplicando el método de CN al mismo problema se obtiene
#
# $$
# \left|
# \frac{1+\frac{k}{2}(a+2\bar{u})}{1-\frac{k}{2}(a+2\bar{u})}
# \right|
# \leq 1
# $$
# y
# $$
# \left|
# \frac{1}{1-\frac{k}{2}(a+2\bar{u})}
# \right|
# \leq 1
# $$
# =============================================================================
N = 1001
x = np.linspace(-5,5,N)
y = np.linspace(-5,5,N)
x,y = np.meshgrid(x,y)
plano = x + y*1j
ubars = np.array([1,0.5,0,-0.5])
fig, axs = plt.subplots(2,2, figsize=(6,6))
for i in range(ubars.shape[0]):
u = ubars[i]
numerador1 = 1 + 0.5 * k * (plano + 2 * u)
denominador1 = 1 - 0.5 * k * (plano + 2 * u)
condicion1 = numerador1 / denominador1
numerador2 = 1#k * (plano * u + u**2)
denominador2 = 1 - 0.5* k * (plano + 2*u)
condicion2 = numerador2 / denominador2
norma1 = np.sqrt( condicion1.real**2 + condicion1.imag**2 ) <= 1
norma2 = np.sqrt( condicion2.real**2 + condicion2.imag**2 ) <= 1
norma = norma1 * norma2
ax = axs.flat[i]
ax.contourf(
x,
y,
norma,
levels=np.array([-1,0,1]),
cmap="Blues"
)
ax.axhline(0, color="k")
ax.axvline(0, color="k")
ax.axis("equal")
ax.set_title(r"$\bar{u}=$ %1.1f" %u)
ax.set_xlabel("real")
ax.set_ylabel("imag")
if u == 0.0:
ax.text(0.5,0.5,"$u'=au$")
for ax in axs.flat:
ax.label_outer()
# plt.savefig("figuras/A-Stability-dudt=au+u2-CN.pdf")
plt.show()
# =============================================================================
# Solución analítica
#
# $$u = \frac{1}{e^{-t}-1}$$
# =============================================================================
cs = np.arange(0,10,2)
t = np.linspace(-1,3,301)
for c in cs:
u = 1 / (c*np.exp(-t) - 1)
plt.plot(t,u, label="c = %d" %c)
plt.ylim((-20,20))
plt.legend()
plt.title("$u=\\frac{1}{ce^{-t}-1}$")
plt.show()
cs = np.arange(0,10,2)
t = np.linspace(-3,3,301)
for c in cs:
u = c / (np.exp(-t) - 1)
plt.plot(t,u, label="c = %d" %c)
plt.ylim((-20,20))
plt.legend()
plt.title("$u=\\frac{c}{e^{-t}-1}$")
plt.show()
cs = np.arange(0,10,2)
t = np.linspace(-3,3,301)
for c in cs:
u = 1 / (np.exp(-t) - 1) + c
plt.plot(t,u, label="c = %d" %c)
plt.ylim((-20,20))
plt.legend()
plt.title("$u=\\frac{1}{e^{-t}-1} + c$")
plt.show()
# Visualización como campo vectorial
x = np.linspace(-4,4,21)
t = x.copy()
y = x.copy()
x,y = np.meshgrid(x,y)
u = x + x**2
v = np.ones(u.shape)
plt.quiver(x,y,u,v)
cs = np.arange(-2,3,1)
for c in cs:
u = 1 / (np.exp(-t) - 1) + c
plt.plot(t,u, label="c = %d" %c)
plt.ylim((np.min(np.min(x)),np.max(np.max(x))))
plt.legend()
plt.title("$u=\\frac{1}{e^{-t}-1} + c$")
plt.show()
# =============================================================================
# Usando la condición inicial
#
# $$u(0) = 1$$
#
# Se tiene la solución particular
#
# $$u(t) = \frac{1}{2 e^{-t} - 1}$$
# =============================================================================
t = np.linspace(-1,1,21)
u = 1 / (2 * np.exp(-t) - 1)
plt.plot(t,u)
plt.scatter(0,1)
plt.ylim((-5,5))
N = 6
T = 0.5
t = np.linspace(0,T,N)
u = 1 / (2 * np.exp(-t) - 1)
# Resolviendo con diferentes métodos numéricos
u0 = np.array([0,1])
tevals = np.linspace(0,T,N)
k = tevals[1] - tevals[0]
f = lambda u: u + u**2
# Forward Euler
ufe = np.zeros(N)
ufe[0] = u0[1]
for n in range(N-1):
ufe[n+1] = u[n] + k * f(u[n])
# Backward Euler
ube = np.zeros(N)
ube[0] = u0[1]
for n in range(N-1):
ube[n+1] = fsolve(lambda u: u-k*f(u)-ube[n], k*ube[n])[0]
# Crank-Nicolson
ucn = np.zeros(N)
ucn[0] = u0[1]
for n in range(N-1):
ucn[n+1] = fsolve(lambda u: u - k*f(u) - ucn[n] - k*f(ucn[n]), k*ucn[n])[0]
# Runge-Kutta-Fehlberg
fun = lambda t,u: f(u)
sol = solve_ivp(fun, [0,T], u0, t_eval=tevals)
urk = sol.y[1,:]
plt.plot(t,u, label="Analitic")
plt.scatter(u0[0],u0[1])
plt.ylim((0.5,6))
plt.xlim((-0.1,0.55))
# FE
plt.plot(tevals, ufe, label="Forward Euler")
# BE
plt.plot(tevals, ube, label="Backward Euler")
# CN
plt.plot(tevals, ucn, label="Crank-Nicolson")
# RKF
plt.plot(sol.t, urk, "--",label="Runge-Kutta-Fehlberg")
# plt.savefig("figuras/dudt=u+u2-solution.pdf")
plt.legend()
plt.show()
errores = np.array([
np.linalg.norm(ufe-u),
np.linalg.norm(ube-u),
np.linalg.norm(ucn-u),
np.linalg.norm(urk-u)
])
df = pd.DataFrame({
"Métodos": ["Forward Euler", "Backward Euler", "Crank-Nicolson", "Runge-Kutta-Fehlberg"],
"Errores (norma 2)": errores
})
print(df)