1
1
2
- (* ::Section:: *)
3
- (* 1.1.1.6 P(x) (a+b x)^m (c+d x)^n (e+f x)^p *)
4
-
5
2
(* ::Subsection::Closed:: *)
6
3
(* 1.1.1.6 P(x) (a+b x)^m (c+d x)^n (e+f x)^p *)
7
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ .) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := Int [Px * (a * c + b * d * x ^ 2 )^ m * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [b * c + a * d , 0 ] && EqQ [m , n ] && (IntegerQ [m ] || ( GtQ [a , 0 ] && GtQ [c , 0 ]) )
8
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ ) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ ) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := (a + b * x )^ FracPart [m ]* (( c + d * x )^ FracPart [m ]/ (a * c + b * d * x ^ 2 )^ FracPart [m ]) * Int [Px * (a * c + b * d * x ^ 2 )^ m * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [b * c + a * d , 0 ] && EqQ [m , n ] && ! IntegerQ [m ]
9
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ .) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := Int [PolynomialQuotient [Px , a + b * x , x ]* (a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [PolynomialRemainder [Px , a + b * x , x ], 0 ]
10
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ .) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := Int [ExpandIntegrand [Px * (a + b * x )^ m * (c + d * x )^ n * (e + f * x )^ p , x ], x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && IntegersQ [m , n ]
11
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ ) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := With [{Qx = PolynomialQuotient [Px , a + b * x , x ], R = PolynomialRemainder [Px , a + b * x , x ]}, b * R * (a + b * x )^ (m + 1 )* (c + d * x )^ (n + 1 )* (( e + f * x )^ (p + 1 )/ ((m + 1 )* (b * c - a * d )* (b * e - a * f ))) + ( 1 / ((m + 1 )* (b * c - a * d )* (b * e - a * f ))) * Int [(a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [(m + 1 )* (b * c - a * d )* (b * e - a * f )* Qx + a * d * f * R * (m + 1 ) - b * R * (d * e * (m + n + 2 ) + c * f * (m + p + 2 )) - b * d * f * R * (m + n + p + 3 )* x , x ], x ]] /; FreeQ [{a , b , c , d , e , f , n , p }, x ] && PolyQ [Px , x ] && ILtQ [m , - 1 ] && IntegersQ [2 * m , 2 * n , 2 * p ]
12
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ ) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := With [{Qx = PolynomialQuotient [Px , a + b * x , x ], R = PolynomialRemainder [Px , a + b * x , x ]}, b * R * (a + b * x )^ (m + 1 )* (c + d * x )^ (n + 1 )* (( e + f * x )^ (p + 1 )/ ((m + 1 )* (b * c - a * d )* (b * e - a * f ))) + ( 1 / ((m + 1 )* (b * c - a * d )* (b * e - a * f ))) * Int [(a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [(m + 1 )* (b * c - a * d )* (b * e - a * f )* Qx + a * d * f * R * (m + 1 ) - b * R * (d * e * (m + n + 2 ) + c * f * (m + p + 2 )) - b * d * f * R * (m + n + p + 3 )* x , x ], x ]] /; FreeQ [{a , b , c , d , e , f , n , p }, x ] && PolyQ [Px , x ] && LtQ [m , - 1 ] && IntegersQ [2 * m , 2 * n , 2 * p ]
13
- Int [( Px_ ) * (( a_ .) + ( b_ .) * ( x_ )) ^ ( m_ .) * (( c_ .) + ( d_ .) * ( x_ )) ^ ( n_ .) * (( e_ .) + ( f_ .) * ( x_ )) ^ ( p_ .) , x_ Symbol ] := With [{q = Expon [Px , x ], k = Coeff [Px , x , Expon [Px , x ]]}, k * (a + b * x )^ (m + q - 1 )* (c + d * x )^ (n + 1 )* (( e + f * x )^ (p + 1 )/ (d * f * b ^ (q - 1 )* (m + n + p + q + 1 ))) + ( 1 / (d * f * b ^ q * (m + n + p + q + 1 ))) * Int [(a + b * x )^ m * (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [d * f * b ^ q * (m + n + p + q + 1 )* Px - d * f * k * (m + n + p + q + 1 )* (a + b * x )^ q + k * (a + b * x )^ (q - 2 )* (a ^ 2 * d * f * (m + n + p + q + 1 ) - b * (b * c * e * (m + q - 1 ) + a * (d * e * (n + 1 ) + c * f * (p + 1 ))) + b * (a * d * f * (2 * (m + q ) + n + p ) - b * (d * e * (m + q + n ) + c * f * (m + q + p )))* x ), x ], x ] /; NeQ [m + n + p + q + 1 , 0 ]] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && IntegersQ [2 * m , 2 * n , 2 * p ]
4
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ .* ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := Int [Px * (a * c + b * d * x ^ 2 )^ m * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [b * c + a * d , 0 ] && EqQ [m , n ] && (IntegerQ [m ] || GtQ [a , 0 ] && GtQ [c , 0 ])
5
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ * ( c_ . + d_ .* x_ )^ n_ * ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := (a + b * x )^ FracPart [m ]* (c + d * x )^ FracPart [m ]/ (a * c + b * d * x ^ 2 )^ FracPart [m ]* Int [Px * (a * c + b * d * x ^ 2 )^ m * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [b * c + a * d , 0 ] && EqQ [m , n ] && Not [ IntegerQ [m ] ]
6
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ .* ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := Int [PolynomialQuotient [Px , a + b * x , x ]* (a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p , x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && EqQ [PolynomialRemainder [Px , a + b * x , x ], 0 ]
7
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ .* ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := Int [ExpandIntegrand [Px * (a + b * x )^ m * (c + d * x )^ n * (e + f * x )^ p , x ], x ] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && IntegersQ [m , n ]
8
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ * ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := With [{Qx = PolynomialQuotient [Px , a + b * x , x ], R = PolynomialRemainder [Px , a + b * x , x ]}, b * R * (a + b * x )^ (m + 1 )* (c + d * x )^ (n + 1 )* (e + f * x )^ (p + 1 )/ ((m + 1 )* (b * c - a * d )* (b * e - a * f )) + 1 / ((m + 1 )* (b * c - a * d )* (b * e - a * f ))* Int [(a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [(m + 1 )* (b * c - a * d )* (b * e - a * f )* Qx + a * d * f * R * (m + 1 ) - b * R * (d * e * (m + n + 2 ) + c * f * (m + p + 2 )) - b * d * f * R * (m + n + p + 3 )* x , x ], x ]] /; FreeQ [{a , b , c , d , e , f , n , p }, x ] && PolyQ [Px , x ] && ILtQ [m , - 1 ] && IntegersQ [2 * m , 2 * n , 2 * p ]
9
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ * ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := With [{Qx = PolynomialQuotient [Px , a + b * x , x ], R = PolynomialRemainder [Px , a + b * x , x ]}, b * R * (a + b * x )^ (m + 1 )* (c + d * x )^ (n + 1 )* (e + f * x )^ (p + 1 )/ ((m + 1 )* (b * c - a * d )* (b * e - a * f )) + 1 / ((m + 1 )* (b * c - a * d )* (b * e - a * f ))* Int [(a + b * x )^ (m + 1 )* (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [(m + 1 )* (b * c - a * d )* (b * e - a * f )* Qx + a * d * f * R * (m + 1 ) - b * R * (d * e * (m + n + 2 ) + c * f * (m + p + 2 )) - b * d * f * R * (m + n + p + 3 )* x , x ], x ]] /; FreeQ [{a , b , c , d , e , f , n , p }, x ] && PolyQ [Px , x ] && LtQ [m , - 1 ] && IntegersQ [2 * m , 2 * n , 2 * p ]
10
+ Int [Px_ * ( a_ . + b_ .* x_ )^ m_ .* ( c_ . + d_ .* x_ )^ n_ .* ( e_ . + f_ .* x_ )^ p_ ., x_ Symbol ] := With [{q = Expon [Px , x ], k = Coeff [Px , x , Expon [Px , x ]]}, k * (a + b * x )^ (m + q - 1 )* (c + d * x )^ (n + 1 )* (e + f * x )^ (p + 1 )/ (d * f * b ^ (q - 1 )* (m + n + p + q + 1 )) + 1 / (d * f * b ^ q * (m + n + p + q + 1 ))* Int [(a + b * x )^ m * (c + d * x )^ n * (e + f * x )^ p * ExpandToSum [ d * f * b ^ q * (m + n + p + q + 1 )* Px - d * f * k * (m + n + p + q + 1 )* (a + b * x )^ q + k * (a + b * x )^ (q - 2 )* (a ^ 2 * d * f * (m + n + p + q + 1 ) - b * (b * c * e * (m + q - 1 ) + a * (d * e * (n + 1 ) + c * f * (p + 1 ))) + b * (a * d * f * (2 * (m + q ) + n + p ) - b * (d * e * (m + q + n ) + c * f * (m + q + p )))* x ), x ], x ] /; NeQ [m + n + p + q + 1 , 0 ]] /; FreeQ [{a , b , c , d , e , f , m , n , p }, x ] && PolyQ [Px , x ] && IntegersQ [2 * m , 2 * n , 2 * p ]
0 commit comments