-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_setup.py
87 lines (69 loc) · 2.7 KB
/
benchmark_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (C) 2022 Maxim Lippeveld
#
# This file is part of SCIP.
#
# SCIP is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# SCIP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SCIP. If not, see <http://www.gnu.org/licenses/>.
from pathlib import Path
from datetime import datetime
import uuid
import pandas
import os
def main(a):
vo = Path(os.environ["VSC_DATA_VO_USER"])
output = vo / "results/scip_benchmark"
output = output / Path("benchmark_%s" % datetime.now().strftime("%Y%m%d%H%M%S"))
output.mkdir(parents=True)
(output / "results").mkdir()
iterations = 10
commands = []
if a == "size":
total_mem = 96
n_workers = 16
for limit in [100, 1_000, 10_000, 100_000, 1_000_000]:
for partition_size in [100, 200, 400, 800, 1600]:
for _ in range(iterations):
ident = uuid.uuid4()
o = str(output / "results" / str(ident))
commands.append(dict(
n_workers=n_workers,
memory=total_mem // n_workers,
partition_size=partition_size,
output=o,
np=n_workers + 2,
prefix=str(output),
data= (vo / "datasets/benchmark_datasets") / f"{str(limit)}.zarr"
))
if a == "n_workers":
total_mem = 96
# partition_size = 200
for n_workers in [1, 2, 4, 8, 16, 32]:
for partition_size in [100, 400, 800, 1600]:
for _ in range(iterations):
ident = uuid.uuid4()
o = str(output / "results" / str(ident))
commands.append(dict(
n_workers=n_workers,
memory=total_mem // n_workers,
partition_size=partition_size,
output=o,
np=n_workers + 2,
prefix=str(output)
))
pandas.DataFrame(commands).to_csv(str(output / "data.csv"), index=False)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-a", type=str)
args = parser.parse_args()
main(args.a)