-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_setup_snake.py
81 lines (65 loc) · 2.35 KB
/
benchmark_setup_snake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (C) 2022 Maxim Lippeveld
#
# This file is part of SCIP.
#
# SCIP is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# SCIP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with SCIP. If not, see <http://www.gnu.org/licenses/>.
from pathlib import Path
from datetime import datetime
import uuid
import pandas
import os
def main(a):
output = Path(os.environ["VSC_DATA_VO_USER"]) / "results/scip_benchmark"
output = output / Path("benchmark_%s" % datetime.now().strftime("%Y%m%d%H%M%S"))
output.mkdir(parents=True)
(output / "results").mkdir()
iterations = 10
commands = []
if a == "size":
total_mem = 88
n_workers = 10
partition_size = 200
for limit in [200000, 300000, 400000, 500000]:
for _ in range(iterations):
ident = uuid.uuid4()
o = str(output / "results" / str(ident))
commands.append(dict(
n_workers=n_workers,
memory=total_mem // n_workers,
partition_size=partition_size,
output=o,
np=n_workers + 2,
limit=limit,
prefix=str(output)
))
if a == "n_workers":
total_mem = 96
partition_size = 200
limit = 100000
for n_workers in [1, 2, 4, 8, 16, 32]:
for i in range(iterations):
commands.append(dict(
n_workers=n_workers,
memory=total_mem // n_workers,
partition_size=partition_size,
np=n_workers + 2,
iteration=i
))
pandas.DataFrame(commands).to_csv(str(output / "data_snake.csv"), index=False)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-a", type=str)
args = parser.parse_args()
main(args.a)