-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathrun_csm.py
117 lines (103 loc) · 4.33 KB
/
run_csm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from generator import load_csm_1b, Segment
from dataclasses import dataclass
# Disable Triton compilation
os.environ["NO_TORCH_COMPILE"] = "1"
# Default prompts are available at https://hf.co/sesame/csm-1b
prompt_filepath_conversational_a = hf_hub_download(
repo_id="sesame/csm-1b",
filename="prompts/conversational_a.wav"
)
prompt_filepath_conversational_b = hf_hub_download(
repo_id="sesame/csm-1b",
filename="prompts/conversational_b.wav"
)
SPEAKER_PROMPTS = {
"conversational_a": {
"text": (
"like revising for an exam I'd have to try and like keep up the momentum because I'd "
"start really early I'd be like okay I'm gonna start revising now and then like "
"you're revising for ages and then I just like start losing steam I didn't do that "
"for the exam we had recently to be fair that was a more of a last minute scenario "
"but like yeah I'm trying to like yeah I noticed this yesterday that like Mondays I "
"sort of start the day with this not like a panic but like a"
),
"audio": prompt_filepath_conversational_a
},
"conversational_b": {
"text": (
"like a super Mario level. Like it's very like high detail. And like, once you get "
"into the park, it just like, everything looks like a computer game and they have all "
"these, like, you know, if, if there's like a, you know, like in a Mario game, they "
"will have like a question block. And if you like, you know, punch it, a coin will "
"come out. So like everyone, when they come into the park, they get like this little "
"bracelet and then you can go punching question blocks around."
),
"audio": prompt_filepath_conversational_b
}
}
def load_prompt_audio(audio_path: str, target_sample_rate: int) -> torch.Tensor:
audio_tensor, sample_rate = torchaudio.load(audio_path)
audio_tensor = audio_tensor.squeeze(0)
# Resample is lazy so we can always call it
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=sample_rate, new_freq=target_sample_rate
)
return audio_tensor
def prepare_prompt(text: str, speaker: int, audio_path: str, sample_rate: int) -> Segment:
audio_tensor = load_prompt_audio(audio_path, sample_rate)
return Segment(text=text, speaker=speaker, audio=audio_tensor)
def main():
# Select the best available device, skipping MPS due to float64 limitations
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print(f"Using device: {device}")
# Load model
generator = load_csm_1b(device)
# Prepare prompts
prompt_a = prepare_prompt(
SPEAKER_PROMPTS["conversational_a"]["text"],
0,
SPEAKER_PROMPTS["conversational_a"]["audio"],
generator.sample_rate
)
prompt_b = prepare_prompt(
SPEAKER_PROMPTS["conversational_b"]["text"],
1,
SPEAKER_PROMPTS["conversational_b"]["audio"],
generator.sample_rate
)
# Generate conversation
conversation = [
{"text": "Hey how are you doing?", "speaker_id": 0},
{"text": "Pretty good, pretty good. How about you?", "speaker_id": 1},
{"text": "I'm great! So happy to be speaking with you today.", "speaker_id": 0},
{"text": "Me too! This is some cool stuff, isn't it?", "speaker_id": 1}
]
# Generate each utterance
generated_segments = []
prompt_segments = [prompt_a, prompt_b]
for utterance in conversation:
print(f"Generating: {utterance['text']}")
audio_tensor = generator.generate(
text=utterance['text'],
speaker=utterance['speaker_id'],
context=prompt_segments + generated_segments,
max_audio_length_ms=10_000,
)
generated_segments.append(Segment(text=utterance['text'], speaker=utterance['speaker_id'], audio=audio_tensor))
# Concatenate all generations
all_audio = torch.cat([seg.audio for seg in generated_segments], dim=0)
torchaudio.save(
"full_conversation.wav",
all_audio.unsqueeze(0).cpu(),
generator.sample_rate
)
print("Successfully generated full_conversation.wav")
if __name__ == "__main__":
main()