-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcutoff_utility.R
78 lines (62 loc) · 2.58 KB
/
cutoff_utility.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
lower_bounds = function(tetha, x){
lowb = matrix(rep(tetha, dim(x)[1]), nrow=dim(x)[1], byrow=TRUE)
lowb[x==0] = -Inf
return(lowb)
}
upper_bounds = function(tetha, x){
lowb = matrix(rep(tetha, dim(x)[1]), nrow=dim(x)[1], byrow=TRUE)
lowb[x==1] = Inf
return(lowb)
}
generate_Z = function(Sigma, lower, upper, algorithm="gibbs"){
#Sigma is the covariance matrix of the Gaussian
#lower is a n*q matrix which stores in every row the lower bound of every z_i
#upper is a n*q matrix which stores in every row the upper bound of every z_i
#algorithm is the algorithm we use to sample every z_i
Z = matrix(NA, nrow=dim(lower)[1], ncol=dim(lower)[2])
for(i in 1:dim(lower)[1]){
Z[i,]=rtmvnorm(n=1, sigma=Sigma, lower=lower[i,], upper=upper[i,], algorithm=algorithm)
}
return(Z)
}
MH_tetha = function(Sigma, x, tau_prior, tetha, sd_proposal=2){
#This function compute a step of metropolis harris to update the cutoffs vector
for(j in 1:dim(x)[2]){
prop_tetha_j = proposal_tetha_j(tetha[j], sd_proposal)
temp_tetha = tetha
temp_tetha[j] = prop_tetha_j
acceptance = min(1, exp( log_density_tetha(temp_tetha, Sigma, x, tau_prior) - log_density_tetha(tetha, Sigma, x, tau_prior)
#+ dproposal(tetha[j], prop_tetha_j, sd=sd_proposal, log=TRUE)
#- dproposal(prop_tetha_j, tetha[j], sd=sd_proposal, log=TRUE)
))
if(rbern(1,acceptance)){
tetha[j] = prop_tetha_j
}
}
return(tetha)
}
proposal_tetha_j = function(tetha_j_old, sd=1){
#This function sample from the proposal q(.|tetha_j_old)~N(tetha_j_old,sd)
return(rnorm(n=1, mean=tetha_j_old, sd=sd))
}
dproposal = function(tetha_new_j, tetha_j, sd=1, log=FALSE){
#the proposal q(tetha_new_j|tetha_j) ~ N(tetha_j, sd^2)
#this function compute the density of the proposal
return(dnorm(x=tetha_new_j, mean=tetha_j, sd=sd, log=log))
}
log_density_tetha = function(tetha, Sigma, x, tau_prior){
# tetha is a q dimensional vector for which we want to evaluate the density
# Sigma is the q*q covariance matrix
# x is a n*q matrix with 0 and 1 corresponding to the categorical observations
# tau_prior is the prior variance of the cutoffs
lower_bounds_matrix = lower_bounds(tetha, x)
upper_bounds_matrix = upper_bounds(tetha, x)
log_dens = 0
for(i in 1:dim(x)[1]){
log_dens = log_dens + log(pmvnorm(lower=lower_bounds_matrix[i,], upper=upper_bounds_matrix[i,], sigma=Sigma))
}
for(j in 1:dim(x)[2]){
log_dens = log_dens + dnorm(tetha[j], sd=tau_prior, log=TRUE)
}
return(log_dens)
}