-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutilityFunctions.R
290 lines (271 loc) · 11.1 KB
/
utilityFunctions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
library(extraDistr)
library(dplyr)
library(igraph)
library(matrixcalc)
library(Rlab)
library(BDgraph)
library(mvtnorm)
library(plyr)
library(pcalg)
library(gRbase)
library(abind)
library(fields)
library(network)
# n.obs is the number of observations to simulate (int), n.variables is the number of
# random variables to generate and (optional) variables.names is a vector of
# strings correpsonding to the names of the variables to simulate. The function takes as input
# either the adjacency matrix of an undirected decomposable graph or double p representing the
# probability of connecting two nodes of the graph in order to generate a random decomposable graph.
generateCategoricalDataFromGraph = function(adjacencyMatrix = NULL, n.obs, n.variables, p = NULL, variables.names = NULL){
if(is.null(adjacencyMatrix)){
while(TRUE){
graph = erdos.renyi.game(n.variables,p,type="gnp",directed = FALSE)
adjacencyMatrix = as_adjacency_matrix(graph, sparse = 0)
if(isDecomposable(adjacencyMatrix)){
break
}
}
}
if(!isDecomposable(adjacencyMatrix)){
stop("Graph should be decomposable.")
}
inv.covariance = rgwish(1, adj = adjacencyMatrix, D = 10 * diag(1,n.variables))
covariance = solve(inv.covariance)
mu = c(rep(0, n.variables))
data = dataCopy = data.frame(rmvnorm(n.obs, mu, covariance))
for(i in 1:n.variables){
while(TRUE){
gamma = runif(1, quantile(dataCopy[,i], 0.2), quantile(dataCopy[,i], 0.8))
data[,i][dataCopy[,i] >= gamma] = 1
data[,i][dataCopy[,i] < gamma] = 0
if(length(unique(data[,i])) > 1){
break
}
}
}
if(!is.null(variables.names)){
if(length(variables.names) != dim(data)[2]){
stop("Dimension of variables.names does not match.")
}
colnames(adjacencyMatrix) = rownames(adjacencyMatrix) = variables.names
colnames(data) = variables.names
}
return(list(adjacencyMatrix, data))
}
# Checks if adjacencyMatrix is the adjacency matrix of an undirected graph.
isUndirectedGraph = function(adjacencyMatrix){
if(!is.square.matrix(adjacencyMatrix)){
message("Matrix is not the adjacency matrix of a graph as it is not square.")
return(FALSE)
}
if(!isSymmetric(adjacencyMatrix)){
message("Graph is not undirected as the adjacency matrix is not symmetric.")
return(FALSE)
}
return(TRUE)
}
# Plots the graph given its adjacency matrix. Optional: variables.names is a vector
# of strings representing the names of the nodes of the graph.
plotGraph = function(adjacencyMatrix, variables.names = NULL, main = NULL){
if(!isUndirectedGraph(adjacencyMatrix)){
stop("Adjacency matrix does not represent an undirected graph.")
}
if(!is.null(variables.names)){
if(length(variables.names) != dim(adjacencyMatrix)[1]){
stop("Length of variables.names is not correct.")
}
colnames(adjacencyMatrix) = rownames(adjacencyMatrix) = variables.names
}
graph = graph_from_adjacency_matrix(adjacencyMatrix, mode = "undirected")
plot(graph, main = main)
}
# Plots the graph in a circular shape given its adjacency matrix.
plotGraphCircular = function(adjacencyMatrix){
labs = as.character(c(1:dim(adjacencyMatrix)[1]))
graph = network(adjacencyMatrix, label = labs)
vertex_col = "gray90"
plot.network(graph, displaylabels = TRUE, vertex.col = vertex_col,
mode = "circle",
label.pos = 5,
usecurve = TRUE, edge.curve = 0, vertex.cex = 2.5,
label.cex = 0.8, edge.lwd = 0.1, arrowhead.cex = 0)
}
# Checks wheter the graph is decomposable or not. adjacencyMatrix
# is a matrix representing the adjacency matrix of an undirected graph.
# Optional: variables.names is a vector of strings representing
# the names of the nodes of the graph.
isDecomposable = function(adjacencyMatrix,variables.names = NULL){
if(!isUndirectedGraph(adjacencyMatrix)){
stop("Adjacency matrix does not represent an undirected graph.")
}
if(!is.null(variables.names)){
if(length(variables.names) != dim(adjacencyMatrix)[1]){
stop("Length of variables.names is not correct.")
}
colnames(adjacencyMatrix) = rownames(adjacencyMatrix) = variables.names
}
graph = graph_from_adjacency_matrix(adjacencyMatrix, mode = "undirected")
return(is_chordal(graph)$chordal)
}
# Computes the (maximal) cliques and (minimal) separators of the graph. adjacencyMatrix
# is a matrix representing the adjacency matrix of an undirected graph. value is a list
# of two lists: the first one is a list of the cliques and the second one is a list of
# the separators. Optional: variables.names is a vector
# of strings representing the names of the nodes of the graph.
getCliquesAndSeparators = function(adjacencyMatrix,variables.names = NULL){
if(!isUndirectedGraph(adjacencyMatrix)){
stop("Adjacency matrix does not represent an undirected graph.")
}
if(!is.null(variables.names)){
if(length(variables.names) != dim(adjacencyMatrix)[1]){
stop("Length of variables.names is not correct.")
}
colnames(adjacencyMatrix) = rownames(adjacencyMatrix) = variables.names
}
decomposition = mpd(adjacencyMatrix)
cliques = as.list(lapply(decomposition$cliques, as.numeric))
cliques = unname(cliques[sapply(cliques, length) > 0])
separators = as.list(lapply(decomposition$separators, as.numeric))
separators = unname(separators[sapply(separators, length) > 0])
# graph = graph_from_adjacency_matrix(adjacencyMatrix, mode = "undirected")
# cliques = maximal.cliques(graph)
# separators = min_separators(graph)
return(list(cliques,separators))
}
# Computes the adjacency matrix of an undirected graph given a vector representing
# its edges. In particualar, edges is a vector such that the first edge is between
# the first and second element of edges, the second edge is between the third and the
# fourth element of edges and so on. Optional: variables.names is a vector
# of strings representing the names of the nodes of the graph.
getAdjacencyMatrixFromEdges = function(edges, variables.names = NULL){
graph = make_graph(edges, directed = FALSE)
adjacencyMatrix = as_adjacency_matrix(graph, sparse = 0)
if(!is.null(variables.names)){
if(length(variables.names) != dim(adjacencyMatrix)[1]){
stop("Length of variables.names is not correct.")
}
colnames(adjacencyMatrix) = rownames(adjacencyMatrix) = variables.names
}
return(adjacencyMatrix)
}
# Given the adjacency matrix of a decomposable graph, computes the adjacency matrix
# of a new decomposable graph obtained by either adding or removing a single edge
# from the original graph. Observe that the proposal density is choosen so that
# q(G|G')/q(G'|G) = 1.
newGraphProposal = function(adjacencyMatrix){
if(!isDecomposable(adjacencyMatrix)){
stop("The graph must be decomposable!")
}
proposals = list()
count = 1
for(i in 1:(dim(adjacencyMatrix)[1] - 1)){
for(j in 1:(dim(adjacencyMatrix)[2] - i)){
newAdjacencyMatrix = adjacencyMatrix
value = newAdjacencyMatrix[i,i+j]
newAdjacencyMatrix[i,i+j] = newAdjacencyMatrix[i+j,i] = as.integer(!value)
proposals[[count]] = newAdjacencyMatrix
count = count + 1
}
}
while(TRUE){
proposalIndex = rdunif(1,1,count-1)
if(isDecomposable(proposals[[proposalIndex]])){
return(proposals[[proposalIndex]])
}
}
}
# Computes the prior ratio for the MH algorithm in the case of a Binomial prior
binomialPrior = function(currentProposal,newProposal,p){
if(is.null(p)){
stop("p should be between 0 and 1!")
}
if(p < 0 | p > 1){
stop("p should be between 0 and 1!")
}
currentEdges = sum(currentProposal) / 2
newEdges = sum(newProposal) / 2
q = dim(currentProposal)[1]
ratio = ((p ** newEdges) * ((1 - p) ** (q*(q-1)/2 - newEdges))) / ((p ** currentEdges) * ((1 - p) ** (q*(q-1)/2 - currentEdges)))
return(ratio)
}
betaBinomialPrior = function(currentProposal,newProposal,a,b){
num = logIntegralBetaBinomial(newProposal,a,b)
den = logIntegralBetaBinomial(currentProposal,a,b)
return(exp(num-den))
}
logIntegralBetaBinomial = function(graph,a,b){
if(is.null(a) | is.null(b)){
stop("a and b should be positive real numbers!")
}
if(a<=0 | b<=0){
stop("a and b should be positive real numbers!")
}
edges = sum(graph) / 2
q = dim(graph)[1]
integral = lgamma(a + edges) + lgamma(b + q*(q-1)/2 - edges) - lgamma(q*(q-1)/2 + a + b) + lgamma(a + b) - lgamma(a) - lgamma(b)
return(integral)
}
# Computes the graph that includes all the edges with posterior inclusion probability >= 0.5
medianProbabilityGraph = function(chain){
mpg = chain[[1]]
for(i in 2:length(chain)){
mpg = mpg + chain[[i]]
}
mpg = mpg / length(chain)
mpg = replace(mpg, mpg < 0.5, 0)
mpg = replace(mpg, mpg >= 0.5, 1)
return(mpg)
}
# Computes the most frequent graph
maximumPosterioriGraph = function(chain){
uniqueValues = count(unlist(lapply(chain, toString)))
map.index = which(uniqueValues$freq == max(uniqueValues$freq))
map = uniqueValues$x[map.index]
map = as.integer(unlist(strsplit(map,", ")))
map = matrix(map,nrow = sqrt(length(map)))
return(map)
}
# Computes the Structural Hamming Distance between two graphs given their adjacency matrices
computeSHD = function(adjacencyMatrix1, adjacencyMatrix2){
graph1 = as_graphnel(graph_from_adjacency_matrix(adjacencyMatrix1,mode = "undirected"))
graph2 = as_graphnel(graph_from_adjacency_matrix(adjacencyMatrix2,mode = "undirected"))
return(shd(graph1,graph2))
}
# Encondes a graph with a unique integer value given its adjacency matrix
encodeGraph = function(adjacencyMatrix){
result = ""
for(i in 1:(dim(adjacencyMatrix)[1] - 1)){
for(j in 1:(dim(adjacencyMatrix)[2] - i)){
result = paste0(result,as.character(adjacencyMatrix[i,i+j]))
}
}
result = strtoi(result,base = 2)
return(result)
}
# Creates a sample drawn from the baseline measure over graphs. In particular, S is the number
# of desired draws, burn is the burn-in, q is the number of nodes in the graph and a_pi, b_pi are
# the hyper-parameters of the Beta prior on probability of edge inclusion pi.
sampleFromBaseline = function(S, burn, q, a_pi, b_pi){
chain = array(NA, c(q, q, S)) # Initialize the chain with S adjacency matrices of NA's
# The initial graph has no edges
graph = matrix(0, q, q)
chain[,,1] = graph
# MCMC sampler to draw the remaining graphs from the baseline measure
for(s in 2:S){
newGraph = newGraphProposal(graph) # Draw a decomposable graph from the neighborhood of the current graph
# Compute the multiplicity correction (log)prior.
# Note that the number of edges of the graph is given by sum(adjacencyMatrix) / 2 since the graphs are decomposable
logPriorNew = lgamma((sum(newGraph) / 2) + a_pi) + lgamma(q*(q-1)/2 - (sum(newGraph) / 2) + b_pi - 1) # New candidate
logPriorOld = lgamma((sum(graph) / 2) + a_pi) + lgamma(q*(q-1)/2 - (sum(graph) / 2) + b_pi - 1) # Current candidate
logPrior = logPriorNew - logPriorOld
# Acceptance ratio
acceptanceRatio = min(0, logPrior)
# Check if the new candidate is accepted
if(log(runif(1)) < acceptanceRatio){
graph = newGraph
}
chain[,,s] = graph
}
chain = chain[,,(burn + 1):S] # Discard burn-in samples
return(chain)
}