-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathBakedScene.cs
378 lines (317 loc) · 11.2 KB
/
BakedScene.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
using System.Collections.Generic;
using System;
using System.Threading.Tasks;
namespace StereoKit.Framework
{
public class BakedScene
{
List<BakeLight> _lights = new List<BakeLight>();
BakedSceneItem[] _items;
StaticScene _scene;
SphericalHarmonics _ambient;
SphericalHarmonics _sky;
int _bounceSamples;
public bool Baking { get; private set; }
public float BakingProgress { get; private set; }
public float LightCutoff { get; set; } = 1/255.0f;
public BakedScene() { }
public void AddPointLight (Vec3 at, Color color, float intensity) { _lights.Add(new BakeLight(at, color, intensity, false)); }
public void AddDirectionalLight(Vec3 dir, Color color, float intensity) { _lights.Add(new BakeLight(-dir.Normalized, color, intensity, true)); }
public void SetAmbient (SphericalHarmonics ambient) => _ambient = ambient;
public void SetSky (SphericalHarmonics sky) => _sky = sky;
public void ClearLights() => _lights.Clear();
public void Bake(StaticScene scene, int bounceSamples = 0, bool areaLights = true)
{
_bounceSamples = bounceSamples;
_scene = scene;
Baking = true;
BakingProgress = 0;
long totalVerts = 0;
long currVerts = 0;
Dictionary<Mesh, Vertex[]> vertexCache = new Dictionary<Mesh, Vertex[]>();
Dictionary<Mesh, uint []> indexCache = new Dictionary<Mesh, uint []>();
Dictionary<string, Material> textureMaterials = new Dictionary<string, Material>();
// Build our list of mesh/material pairs
List<BakedSceneItem> itemList = new List<BakedSceneItem>();
for (int i = 0; i < scene._items.Count; i++)
{
if (!scene._items[i].visible) continue;
Tex tex = scene._items[i].material.GetTexture("diffuse");
if (!textureMaterials.TryGetValue(tex.Id, out Material mat))
{
mat = Material.Unlit.Copy();
mat[MatParamName.DiffuseTex] = tex;
textureMaterials[tex.Id] = mat;
}
int item = itemList.FindIndex(t => t.material == mat);
if (item == -1)
{
BakedSceneItem sceneItem = new BakedSceneItem();
sceneItem.material = mat;
itemList.Add(sceneItem);
}
// cache mesh data while we're at it
if (!vertexCache.TryGetValue(scene._items[i].mesh, out Vertex[] meshVerts))
{
meshVerts = scene._items[i].mesh.GetVerts();
vertexCache[scene._items[i].mesh] = meshVerts;
indexCache [scene._items[i].mesh] = scene._items[i].mesh.GetInds();
}
}
BakedSceneItem[] itemArray = itemList.ToArray();
// allocate memory for the baked verts
for (int i = 0; i < scene._items.Count; i++)
{
if (!scene._items[i].visible) continue;
Tex tex = scene._items[i].material.GetTexture("diffuse");
Material mat = textureMaterials[tex.Id];
int item = Array.FindIndex(itemArray,t => t.material == mat);
itemArray[item].vertCount += scene._items[i].mesh.VertCount;
itemArray[item].indCount += scene._items[i].mesh.IndCount;
}
for (int i = 0; i <itemArray.Length; i++)
{
itemArray[i].verts = new Vertex[itemArray[i].vertCount];
itemArray[i].inds = new uint [itemArray[i].indCount];
totalVerts += itemArray[i].vertCount;
}
// Bake all the materials!
for (int i = 0; i < scene._items.Count; i++)
{
if (!scene._items[i].visible) continue;
Tex tex = scene._items[i].material.GetTexture("diffuse");
Material mat = textureMaterials[tex.Id];
int item = Array.FindIndex(itemArray, t => t.material == mat);
Vertex[] meshVerts = vertexCache[scene._items[i].mesh];
BakeMesh(vertexCache[scene._items[i].mesh], itemArray[item].verts, itemArray[item].vertCurr, scene._items[i].transform, areaLights);
uint[] meshInds = indexCache[scene._items[i].mesh];
for (int t = 0; t < meshInds.Length; t++)
itemArray[item].inds[itemArray[item].indCurr + t] = meshInds[t] + itemArray[item].vertCurr;
itemArray[item].indCurr += (uint)meshInds .Length;
itemArray[item].vertCurr += (uint)meshVerts.Length;
currVerts += meshVerts.Length;
BakingProgress = (float)(currVerts / (double)totalVerts);
}
// And generate the meshes
for (int i = 0; i < itemArray.Length; i++)
{
itemArray[i].mesh = new Mesh();
itemArray[i].mesh.SetVerts(itemArray[i].verts);
itemArray[i].mesh.SetInds (itemArray[i].inds);
itemArray[i].verts = null;
itemArray[i].inds = null;
}
_items = itemArray;
Baking = false;
BakingProgress = 1;
}
private void BakeMesh(Vertex[] verts, Vertex[] to, uint toOffset, Matrix at, bool areaLights)
{
//for (int v = 0; v < verts.Length; v++)
Parallel.For(0, verts.Length, (v) =>
{
Vertex vert = verts[v];
vert.pos = at.Transform(vert.pos);
vert.norm = at.TransformNormal(vert.norm).Normalized;
Color amb = _ambient.Sample(vert.norm);
Color c = SamplePoint(vert.pos, vert.norm, _bounceSamples, areaLights);
c.r += amb.r;
c.g += amb.g;
c.b += amb.b;
if (c.r > 1) c.r = 1;
if (c.g > 1) c.g = 1;
if (c.b > 1) c.b = 1;
vert.col = c;
to[v + toOffset] = vert;
}
);
}
/*Vec2[] lightSampleOffsets = new Vec2[] {
new Vec2( 0, 0),
new Vec2(-1, 1),
new Vec2( 1, 1),
new Vec2(-1,-1),
new Vec2( 1,-1),
};*/
/*Vec2[] lightSampleOffsets = new Vec2[] {
new Vec2( .25f, .97f),
new Vec2( .71f,-.71f),
new Vec2(-.97f,-.26f),
};*/
/*Vec2[] lightSampleOffsets = new Vec2[] {
new Vec2( .34f, .94f),
new Vec2( .64f,-.76f),
new Vec2(-.98f,-.17f),
};*/
Vec2[] lightSampleOffsets = new Vec2[] {
new Vec2(-.42f, .9f),
new Vec2( .9f, .42f),
new Vec2( .42f,-.9f),
new Vec2(-.9f, -.42f),
};
private float LightVisibility(Vec3 lightPos, Vec3 from, float checkSize, bool smoothed)
{
if (!smoothed)
{
Vec3 directDir = lightPos - from;
return _scene.Raycast(new Ray(from, directDir), out Ray hit) && Vec3.DistanceSq(from, hit.position) < directDir.MagnitudeSq
? 0
: 1;
}
Vec3 dir = (lightPos - from).Normalized;
Vec3 right = Vec3.PerpendicularRight(dir, Vec3.Up);
Vec3 up = -Vec3.PerpendicularRight(dir, right);
float coverage = 0;
int count = smoothed ? lightSampleOffsets.Length : 1;
for (int i = 0; i < count; i++)
{
Vec3 currLight = lightPos +
lightSampleOffsets[i].x * right * checkSize +
lightSampleOffsets[i].y * up * checkSize;
Vec3 currDir = currLight - from;
float distSq = 100000000;
if (_scene.Raycast(new Ray(from, currDir), out Ray hit))
{
distSq = Vec3.DistanceSq(from, hit.position);
}
if (distSq + 0.01f > currDir.MagnitudeSq)
coverage += 1;
}
return (coverage / count);
}
bool debug = false;
static Vec3 Quantize(Vec3 v, float by)
{
return new Vec3(
(int)(v.x * by) / by,
(int)(v.y * by) / by,
(int)(v.z * by) / by);
}
private Color SamplePoint(Vec3 at, Vec3 norm, int bounceSamples, bool areaLights)
{
// Offset the position from the surface, just a bit
at += norm * 0.01f;
// Quantize the position to help remove small variations in
// lighting from one vertex to the next
at = Quantize(at, 200);
norm = Quantize(norm, 200);
Noise.NextSeed = new Noise.Seed { seed = (uint)(at.x * 1017 + at.y * 37000 + at.z * 12789) };
Color c = new Color(0, 0, 0, 1);
for (int i = 0; i < _lights.Count; i++)
{
Color lc = _lights[i].color;
float vis = 0;
if (_lights[i].directional)
{
vis = LightVisibility(at + _lights[i].pos * 1000.0f, at, 100.0f, areaLights);
}
else
{
Vec3 dir = _lights[i].pos - at;
float magSq = dir.MagnitudeSq;
float intensity = (1.0f / magSq) * _lights[i].intensity * Math.Max(0, Vec3.Dot(dir/SKMath.Sqrt(magSq), norm));
// Skip the light if we know it's not bright enough early!
if (intensity > LightCutoff)
vis = LightVisibility(_lights[i].pos, at, 0.3f, areaLights) * intensity;
}
c = new Color(c.r + lc.r * vis, c.g + lc.g * vis, c.b + lc.b * vis, c.a);
}
if (debug) Mesh.Sphere.Draw(Material.Unlit, Matrix.TS(at, 0.2f), c);
Vec3 right = Vec3.PerpendicularRight(norm, new Vec3(0, 1, -1.003f)).Normalized;
Vec3 up = Vec3.PerpendicularRight(right, norm).Normalized;
float mod = (1.0f / bounceSamples);
for (int i=0;i<bounceSamples;i+=1)
{
Vec3 sample = SampleHemisphere_Uniform((uint)i, (uint)bounceSamples);
Vec3 currDir = right*sample.x + norm*sample.y + up*sample.z;
Color bounceColor = _scene.Raycast(new Ray(at, currDir), out Ray hit)
? SamplePoint(hit.position, hit.direction, 0, false)
: _sky.Sample(currDir);
c.r += bounceColor.r * mod;
c.g += bounceColor.g * mod;
c.b += bounceColor.b * mod;
}
return c;
}
Vec2 Hammersley(uint i, uint numSamples)
{
uint b = i;
b = (b << 16) | (b >> 16);
b = ((b & 0x55555555) << 1) | ((b & 0xAAAAAAAA) >> 1);
b = ((b & 0x33333333) << 2) | ((b & 0xCCCCCCCC) >> 2);
b = ((b & 0x0F0F0F0F) << 4) | ((b & 0xF0F0F0F0) >> 4);
b = ((b & 0x00FF00FF) << 8) | ((b & 0xFF00FF00) >> 8);
float radicalInverseVDC = b * 2.3283064365386963e-10f;
return new Vec2((i / (float)numSamples), radicalInverseVDC);
}
Vec3 SampleHemisphere_Uniform(uint i, uint numSamples)
{
// Returns a 3D sample vector orientated around (0.0, 1.0, 0.0)
// For practical use, must rotate with a rotation matrix (or whatever
// your preferred approach is) for use with normals, etc.
Vec2 xi = Hammersley(i, numSamples);
float phi = xi.y * 2.0f * (float)Math.PI;
float cosTheta = 1.0f - xi.x;
float sinTheta = SKMath.Sqrt(1.0f - cosTheta * cosTheta);
return new Vec3(SKMath.Cos(phi) * sinTheta, cosTheta, SKMath.Sin(phi) * sinTheta);
}
public bool Raycast(Ray worldRay, out Ray at)
=> _scene.Raycast(worldRay, out at);
public void Draw()
{
if (_items != null)
{
for (int i = 0; i < _items.Length; i++)
_items[i].Draw();
}
else if (_scene != null)
{
_scene.Draw();
}
}
public void DrawDebug()
{
for (int i = 0; i < _lights.Count; i++)
{
if (_lights[i].directional) continue;
Mesh.Sphere.Draw(Material.Unlit, Matrix.TS(_lights[i].pos, 0.1f), _lights[i].color);
}
if (Input.Key(Key.Space).IsActive() && _scene.Raycast(Input.Pointer(0, InputSource.HandRight).ray, out Ray hit))
{
debug = true;
SamplePoint(hit.position, hit.direction, _bounceSamples, true);
debug = false;
}
if (Input.Key(Key.F).IsJustActive())
{
for (int i = 0; i < _items.Length; i++)
_items[i].material.Wireframe = true;
}
if (Input.Key(Key.F).IsJustInactive())
{
for (int i = 0; i < _items.Length; i++)
_items[i].material.Wireframe = false;
}
}
}
struct BakedSceneItem
{
internal Mesh mesh;
internal Material material;
internal Vertex[] verts;
internal uint [] inds;
internal int vertCount;
internal int indCount;
internal uint vertCurr;
internal uint indCurr;
public void Draw() => mesh.Draw(material, Matrix.Identity);
}
struct BakeLight
{
internal Vec3 pos;
internal Color color;
internal float intensity;
internal bool directional;
public BakeLight(Vec3 pos, Color color, float intensity, bool directional) { this.pos = pos; this.color = color; this.intensity = intensity; this.directional = directional; }
}
}