-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_autoencoder.py
79 lines (63 loc) · 2.29 KB
/
train_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import json
import torch
import pytorch_lightning as pl
torch.set_float32_matmul_precision("high")
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from src.models.videomodels.autoencoder.datamodule import AVSpeechDataModule
from src.models.videomodels.autoencoder.autoencoder import AE
ckpt_name = None
def main():
# dataloader
datamodule = AVSpeechDataModule(
"data-preprocess/LRS2/tr",
"data-preprocess/LRS2/cv",
"data-preprocess/LRS2/tt",
segment=2,
batch_size=40,
)
datamodule.setup()
train_loader, val_loader, test_loader = datamodule.make_loader
# Define scheduler
system = AE(in_channels=1, base_channels=4, num_layers=3, train_loader=train_loader, val_loader=val_loader)
# Define callbacks
callbacks = []
exp_dir = os.path.join("../experiments/autoencoder", "default")
checkpoint = ModelCheckpoint(
exp_dir,
filename="{epoch}",
monitor="val/loss",
mode="min",
save_top_k=5,
verbose=True,
save_last=True,
)
callbacks.append(checkpoint)
callbacks.append(EarlyStopping(monitor="val/loss", patience=10, verbose=True))
# default logger used by trainer
comet_logger = TensorBoardLogger(exp_dir, name="baseline")
trainer = pl.Trainer(
max_epochs=200,
callbacks=callbacks,
default_root_dir=exp_dir,
devices="auto",
accelerator="auto",
strategy=DDPStrategy(),
limit_train_batches=1.0,
logger=comet_logger,
)
trainer.fit(system, ckpt_path=os.path.join(exp_dir, ckpt_name) if ckpt_name else None)
print("Finished Training")
# Save best_k models
best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
json.dump(best_k, f, indent=0)
# put on cpu and serialize
state_dict = torch.load(checkpoint.best_model_path, map_location="cpu")
system.load_state_dict(state_dict=state_dict["state_dict"])
to_save = system.encoder.state_dict()
torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
if __name__ == "__main__":
main()