Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG/Help] <title>运行示例代码出现TypeError报错 #686

Open
1 task done
wumingshi000 opened this issue Feb 17, 2025 · 0 comments
Open
1 task done

[BUG/Help] <title>运行示例代码出现TypeError报错 #686

wumingshi000 opened this issue Feb 17, 2025 · 0 comments

Comments

@wumingshi000
Copy link

Is there an existing issue for this?

  • I have searched the existing issues

Current Behavior

运行的就是示例代码如下,出现了下面的TypeError 报错
`from transformers import AutoTokenizer, AutoModel
import torch
model_path="/home/songxinyue/new/models/chatglm2-6b"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")

model = AutoModel.from_pretrained(model_path, trust_remote_code=True).float()

.half()

Move the model to the device

#model.to(device)
model = model.eval()
response, history = model.chat(tokenizer, "hello", history=[])
print(response)
response, history = model.chat(tokenizer, "What should I do if I can't sleep at night?", history=history)
print(response)`

`---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[1], line 13
9 # .half()
10 # Move the model to the device
11 #model.to(device)
12 model = model.eval()
---> 13 response, history = model.chat(tokenizer, "hello", history=[])
14 print(response)
15 response, history = model.chat(tokenizer, "What should I do if I can't sleep at night?", history=history)

File ~/new/environment/anaconda3/envs/sxy/lib/python3.10/site-packages/torch/autograd/grad_mode.py:27, in _DecoratorContextManager.call..decorate_context(*args, **kwargs)
24 @functools.wraps(func)
25 def decorate_context(*args, **kwargs):
26 with self.clone():
---> 27 return func(*args, **kwargs)

File ~/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py:1033, in ChatGLMForConditionalGeneration.chat(self, tokenizer, query, history, max_length, num_beams, do_sample, top_p, temperature, logits_processor, **kwargs)
1030 gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1031 "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1032 inputs = self.build_inputs(tokenizer, query, history=history)
-> 1033 outputs = self.generate(**inputs, **gen_kwargs)
1034 outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1035 response = tokenizer.decode(outputs)

File ~/new/environment/anaconda3/envs/sxy/lib/python3.10/site-packages/torch/autograd/grad_mode.py:27, in _DecoratorContextManager.call..decorate_context(*args, **kwargs)
24 @functools.wraps(func)
25 def decorate_context(*args, **kwargs):
26 with self.clone():
---> 27 return func(*args, **kwargs)

File ~/new/environment/anaconda3/envs/sxy/lib/python3.10/site-packages/transformers/generation/utils.py:2015, in GenerationMixin.generate(self, inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, assistant_model, streamer, negative_prompt_ids, negative_prompt_attention_mask, **kwargs)
2007 input_ids, model_kwargs = self._expand_inputs_for_generation(
2008 input_ids=input_ids,
2009 expand_size=generation_config.num_return_sequences,
2010 is_encoder_decoder=self.config.is_encoder_decoder,
2011 **model_kwargs,
2012 )
2014 # 12. run sample (it degenerates to greedy search when generation_config.do_sample=False)
-> 2015 result = self._sample(
2016 input_ids,
2017 logits_processor=prepared_logits_processor,
2018 stopping_criteria=prepared_stopping_criteria,
2019 generation_config=generation_config,
2020 synced_gpus=synced_gpus,
2021 streamer=streamer,
2022 **model_kwargs,
2023 )
2025 elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH):
2026 # 11. prepare beam search scorer
2027 beam_scorer = BeamSearchScorer(
2028 batch_size=batch_size,
2029 num_beams=generation_config.num_beams,
(...)
2034 max_length=generation_config.max_length,
2035 )

File ~/new/environment/anaconda3/envs/sxy/lib/python3.10/site-packages/transformers/generation/utils.py:3014, in GenerationMixin._sample(self, input_ids, logits_processor, stopping_criteria, generation_config, synced_gpus, streamer, **model_kwargs)
3012 if streamer is not None:
3013 streamer.put(next_tokens.cpu())
-> 3014 model_kwargs = self._update_model_kwargs_for_generation(
3015 outputs,
3016 model_kwargs,
3017 is_encoder_decoder=self.config.is_encoder_decoder,
3018 )
3020 unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
3021 this_peer_finished = unfinished_sequences.max() == 0

File ~/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py:871, in ChatGLMForConditionalGeneration._update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, standardize_cache_format)
863 def _update_model_kwargs_for_generation(
864 self,
865 outputs: ModelOutput,
(...)
869 ) -> Dict[str, Any]:
870 # update past_key_values
--> 871 model_kwargs["past_key_values"] = self._extract_past_from_model_output(
872 outputs, standardize_cache_format=standardize_cache_format
873 )
875 # update attention mask
876 if "attention_mask" in model_kwargs:

TypeError: GenerationMixin._extract_past_from_model_output() got an unexpected keyword argument 'standardize_cache_format'`

Expected Behavior

No response

Steps To Reproduce

The code that is running is just the few lines of sample code above, and this TypeError error occurred. I suspect it's a problem with the environment, but I don't know which package specifically needs to be modified.

Environment

- OS:linux
- Python:3.10.14
- Transformers:4.28.1
- PyTorch:1.12.1+cu113
- CUDA Support (`python -c "import torch; print(torch.cuda.is_available())"`) :
True

Anything else?

No response

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant