- one_blob_only
- support_inplace
y = argmax(x, out_max_val, topk)
param id |
name |
type |
default |
description |
0 |
out_max_val |
int |
0 |
|
1 |
topk |
int |
1 |
|
y = (x - mean) / sqrt(var + eps) * slope + bias
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
channels |
int |
0 |
|
1 |
eps |
float |
0.f |
|
weight |
type |
shape |
slope_data |
float |
[channels] |
mean_data |
float |
[channels] |
var_data |
float |
[channels] |
bias_data |
float |
[channels] |
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
bias_data_size |
int |
0 |
|
weight |
type |
shape |
bias_data |
float |
[channels] |
This operation is used for binary computation, and the calculation rule depends on the broadcasting rule.
if with_scalar = 1:
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
Operation type as follows |
1 |
with_scalar |
int |
0 |
with_scalar=0 B is a matrix, with_scalar=1 B is a scalar |
2 |
b |
float |
0.f |
When B is a scalar, B = b |
Operation type:
- 0 = ADD
- 1 = SUB
- 2 = MUL
- 3 = DIV
- 4 = MAX
- 5 = MIN
- 6 = POW
- 7 = RSUB
- 8 = RDIV
- 9 = RPOW
- 10 = ATAN2
- 11 = RATAN2
y = log(1 + e^(-x)) , x > 0
y = log(1 + e^x), x < 0
- one_blob_only
- support_inplace
- one_blob_only
- support_packing
param id |
name |
type |
default |
description |
0 |
type_from |
int |
0 |
|
1 |
type_to |
int |
0 |
|
Element type:
- 0 = auto
- 1 = float32
- 2 = float16
- 3 = int8
- 4 = bfloat16
if x < 0 y = (exp(x / alpha) - 1.f) * alpha
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
1.f |
|
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
min |
float |
-FLT_MAX |
|
1 |
max |
float |
FLT_MAX |
|
y = concat(x0, x1, x2, ...) by axis
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, num_input, num_output] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[num_output] |
bottom_blob_int8_scales |
float |
[1] |
top_blob_int8_scales |
float |
[1] |
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, num_input, num_output] |
bias_data |
float |
[num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
pad_value |
float |
0.f |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data |
float |
[num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[group] |
bottom_blob_int8_scales |
float |
[1] |
top_blob_int8_scales |
float |
[1] |
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
pad_value |
float |
0.f |
|
19 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
pad_value |
float |
0.f |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
param id |
name |
type |
default |
description |
0 |
woffset |
int |
0 |
|
1 |
hoffset |
int |
0 |
|
13 |
doffset |
int |
0 |
|
2 |
coffset |
int |
0 |
|
9 |
starts |
array |
[ ] |
|
11 |
axes |
array |
[ ] |
|
param id |
name |
type |
default |
description |
0 |
woffset |
int |
0 |
|
1 |
hoffset |
int |
0 |
|
13 |
doffset |
int |
0 |
|
2 |
coffset |
int |
0 |
|
3 |
outw |
int |
0 |
|
4 |
outh |
int |
0 |
|
14 |
outd |
int |
0 |
|
5 |
outc |
int |
0 |
|
6 |
woffset2 |
int |
0 |
|
7 |
hoffset2 |
int |
0 |
|
15 |
doffset2 |
int |
0 |
|
8 |
coffset2 |
int |
0 |
|
9 |
starts |
array |
[ ] |
|
10 |
ends |
array |
[ ] |
|
11 |
axes |
array |
[ ] |
|
If axis < 0, we use axis = x.dims + axis
It implements https://pytorch.org/docs/stable/generated/torch.cumsum.html
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
x2 = deconv(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_w |
int |
0 |
|
21 |
output_h |
int |
output_w |
|
28 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, num_input, num_output] |
bias_data |
float |
[num_output] |
x2 = deconv1d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
output_pad_right |
int |
0 |
|
20 |
output_w |
int |
0 |
|
28 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, num_input, num_output] |
bias_data |
float |
[num_output] |
x2 = deconv3d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_pad_behind |
int |
output_pad_right |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
25 |
output_w |
int |
0 |
|
26 |
output_h |
int |
output_w |
|
27 |
output_d |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data |
float |
[num_output] |
x2 = deconv(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_w |
int |
0 |
|
21 |
output_h |
int |
output_w |
|
28 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
15 |
pad_right |
int |
pad_left |
|
18 |
output_pad_right |
int |
0 |
|
20 |
output_w |
int |
0 |
|
28 |
dynamic_weight |
int |
0 |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
7 |
group |
int |
1 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
17 |
pad_behind |
int |
pad_front |
|
18 |
output_pad_right |
int |
0 |
|
19 |
output_pad_bottom |
int |
output_pad_right |
|
20 |
output_pad_behind |
int |
output_pad_right |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
dilation_d |
int |
dilation_w |
|
23 |
stride_d |
int |
stride_w |
|
24 |
pad_front |
int |
pad_left |
|
25 |
output_w |
int |
0 |
|
26 |
output_h |
int |
output_w |
|
27 |
output_d |
int |
output_w |
|
weight |
type |
shape |
weight_data |
float/fp16 |
[kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data |
float |
[num_output] |
x2 = deformableconv2d(x, offset, mask, weight, kernel, stride, dilation) + bias
y = activation(x2, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
5 |
bias_term |
int |
0 |
|
6 |
weight_data_size |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[kernel_w, kernel_h, num_input, num_output] |
bias_data |
float |
[num_output] |
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
1 |
|
1 |
bias_data_size |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
bias_data |
float |
[bias_data_size] |
param id |
name |
type |
default |
description |
0 |
diagonal |
int |
0 |
|
param id |
name |
type |
default |
description |
0 |
scale |
float |
1.f |
|
y = elementwise_op(x0, x1, ...)
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
|
1 |
coeffs |
array |
[ ] |
|
Operation type:
if x < 0 y = (exp(x) - 1) * alpha
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.1f |
|
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
input_dim |
int |
0 |
|
2 |
bias_term |
int |
0 |
|
3 |
weight_data_size |
int |
0 |
|
18 |
int8_scale_term |
int |
0 |
|
weight |
type |
shape |
weight_data |
float |
[weight_data_size] |
bias_term |
float |
[num_output] |
weight_data_int8_scales |
float |
[1] |
if base == -1 y = exp(shift + x * scale)
else y = pow(base, (shift + x * scale))
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
base |
float |
-1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
Reshape blob to 1 dimension
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|
20 |
output_w |
int |
0 |
|
21 |
output_h |
int |
output_w |
|
param id |
name |
type |
default |
description |
0 |
dim |
int |
0 |
|
if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x)));
else y = 0.5 * x * erfc(-0.70710678 * x)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
fast_gelu |
int |
0 |
use approximation |
If axis < 0, we use axis = x.dims + axis
GLU(a,b)=a⊗σ(b)
where a is the first half of the input matrix and b is the second half.
axis specifies the dimension to split the input
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
a = transA ? transpose(x0) : x0
b = transb ? transpose(x1) : x1
c = x2
y = (gemm(a, b) + c * beta) * alpha
param id |
name |
type |
default |
description |
0 |
alpha |
float |
1.f |
|
1 |
beta |
float |
1.f |
|
2 |
transA |
int |
0 |
|
3 |
transb |
int |
0 |
|
4 |
constantA |
int |
0 |
|
5 |
constantB |
int |
0 |
|
6 |
constantC |
int |
0 |
|
7 |
constantM |
int |
0 |
|
8 |
constantN |
int |
0 |
|
9 |
constantK |
int |
0 |
|
10 |
constant_broadcast_type_C |
int |
0 |
|
11 |
output_N1M |
int |
0 |
|
12 |
output_elempack |
int |
0 |
|
13 |
output_elemtype |
int |
0 |
|
14 |
output_transpose |
int |
0 |
|
18 |
int8_scale_term |
int |
0 |
|
20 |
constant_TILE_M |
int |
0 |
|
21 |
constant_TILE_N |
int |
0 |
|
22 |
constant_TILE_K |
int |
0 |
|
weight |
type |
shape |
A_data |
float/fp16/int8 |
[M, K] or [K, M] |
B_data |
float/fp16/int8 |
[N, K] or [K, N] |
C_data |
float |
[1], [M] or [N] or [1, M] or [N,1] or [N, M] |
A_data_int8_scales |
float |
[M] |
B_data_int8_scales |
float |
[1] |
Given an input and a flow-field grid, computes the output using input values and pixel locations from grid.
For each output location output[:, h2, w2], the size-2 vector grid[h2, w2, 2] specifies input pixel[:, h1, w1] locations x and y,
which are used to interpolate the output value output[:, h2, w2]
This function is often used in conjunction with affine_grid() to build Spatial Transformer Networks .
param id |
name |
type |
default |
description |
0 |
sample_type |
int |
1 |
|
1 |
padding_mode |
int |
1 |
|
2 |
align_corner |
int |
0 |
|
3 |
permute_fusion |
int |
0 |
fuse with permute |
Sample type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
Padding mode:
- 1 = zeros
- 2 = border
- 3 = reflection
split x along channel axis into group x0, x1 ...
l2 normalize for each group x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
group |
int |
1 |
|
1 |
channels |
int |
0 |
|
2 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
3 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[channels] |
beta_data |
float |
[channels] |
Apply a single-layer GRU to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = gru(x)
y0, hidden y1 = gru(x0, hidden x1)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
hidden size of output |
1 |
weight_data_size |
int |
0 |
total size of weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, num_output * 3, num_directions] |
bias_c_data |
float/fp16/int8 |
[num_output, 4, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, num_output * 3, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
y = clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.2f |
|
1 |
beta |
float |
0.5f |
|
y = x * clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
0.2f |
|
1 |
beta |
float |
0.5f |
|
x2 = innerproduct(x, weight) + bias
y = activation(x2, act_type, act_params)
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
bias_term |
int |
0 |
|
2 |
weight_data_size |
int |
0 |
|
8 |
int8_scale_term |
int |
0 |
|
9 |
activation_type |
int |
0 |
|
10 |
activation_params |
array |
[ ] |
|
weight |
type |
shape |
weight_data |
float/fp16/int8 |
[num_input, num_output] |
bias_data |
float |
[num_output] |
weight_data_int8_scales |
float |
[num_output] |
bottom_blob_int8_scales |
float |
[1] |
param id |
name |
type |
default |
description |
0 |
w |
int |
0 |
|
1 |
h |
int |
0 |
|
11 |
d |
int |
0 |
|
2 |
c |
int |
0 |
|
split x along channel axis into instance x0, x1 ...
l2 normalize for each channel instance x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
channels |
int |
0 |
|
1 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
2 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[channels] |
beta_data |
float |
[channels] |
if dynamic_target_size == 0 y = resize(x) by fixed size or scale
else y = resize(x0, size(x1))
- one_blob_only if dynamic_target_size == 0
param id |
name |
type |
default |
description |
0 |
resize_type |
int |
0 |
|
1 |
height_scale |
float |
1.f |
|
2 |
width_scale |
float |
1.f |
|
3 |
output_height |
int |
0 |
|
4 |
output_width |
int |
0 |
|
5 |
dynamic_target_size |
int |
0 |
|
6 |
align_corner |
int |
0 |
|
Resize type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
x1 = x as complex
x1 = x1 * sqrt(norm) if normalized
y = istft(x1)
y1 = unpad(y) if center
if returns == 0 return y1 as complex
if returns == 1 return y1 real
if returns == 2 return y1 imag
param id |
name |
type |
default |
description |
0 |
n_fft |
int |
0 |
|
1 |
returns |
int |
1 |
|
2 |
hoplen |
int |
n_fft / 4 |
|
3 |
winlen |
int |
n_fft |
|
4 |
window_type |
int |
0 |
0=ones 1=hann 2=hamming |
5 |
center |
int |
1 |
|
7 |
normalized |
int |
0 |
0=no 1=n_fft 2=window-l2-energy |
split x along outmost axis into part x0, x1 ...
l2 normalize for each part x0, x1 ...
y = x * gamma + beta by elementwise
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
affine_size |
int |
0 |
|
1 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
2 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[affine_size] |
beta_data |
float |
[affine_size] |
if base == -1 y = log(shift + x * scale)
else y = log(shift + x * scale) / log(base)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
base |
float |
-1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size
if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size
y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
region_type |
int |
0 |
|
1 |
local_size |
int |
5 |
|
2 |
alpha |
float |
1.f |
|
3 |
beta |
float |
0.75f |
|
4 |
bias |
float |
1.f |
|
Region type:
- 0 = ACROSS_CHANNELS
- 1 = WITHIN_CHANNEL
Apply a single-layer LSTM to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = lstm(x)
y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
output size of output |
1 |
weight_data_size |
int |
0 |
total size of IFOG weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
3 |
hidden_size |
int |
num_output |
hidden size |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, hidden_size * 4, num_directions] |
bias_c_data |
float/fp16/int8 |
[hidden_size, 4, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, hidden_size * 4, num_directions] |
weight_hr_data |
float/fp16/int8 |
[hidden_size, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
param id |
name |
type |
default |
description |
0 |
w |
int |
0 |
|
1 |
h |
int |
0 |
|
11 |
d |
int |
0 |
|
2 |
c |
int |
0 |
|
21 |
load_type |
int |
1 |
1=fp32 |
weight |
type |
shape |
data |
float |
[w, h, d, c] |
y = x * tanh(log(exp(x) + 1))
- one_blob_only
- support_inplace
split q k v into num_head part q0, k0, v0, q1, k1, v1 ...
for each num_head part
xq = affine(q) / (embed_dim / num_head)
xk = affine(k)
xv = affine(v)
xqk = xq * xk
xqk = xqk + attn_mask if attn_mask exists
softmax_inplace(xqk)
xqkv = xqk * xv
merge xqkv to out
y = affine(out)
param id |
name |
type |
default |
description |
0 |
embed_dim |
int |
0 |
|
1 |
num_heads |
int |
1 |
|
2 |
weight_data_size |
int |
0 |
qdim = weight_data_size / embed_dim |
3 |
kdim |
int |
embed_dim |
|
4 |
vdim |
int |
embed_dim |
|
5 |
attn_mask |
int |
0 |
|
6 |
scale |
float |
1.f / sqrt(embed_dim / num_heads) |
|
18 |
int8_scale_term |
int |
0 |
|
weight |
type |
shape |
q_weight_data |
float/fp16/int8 |
[embed_dim * qdim] |
q_bias_data |
float |
[embed_dim] |
k_weight_data |
float/fp16/int8 |
[embed_dim * kdim] |
k_bias_data |
float |
[embed_dim] |
v_weight_data |
float/fp16/int8 |
[embed_dim * vdim] |
v_bias_data |
float |
[embed_dim] |
out_weight_data |
float/fp16/int8 |
[qdim * embed_dim] |
out_bias_data |
float |
[qdim] |
q_weight_data_int8_scales |
float |
[embed_dim] |
k_weight_data_int8_scales |
float |
[embed_dim] |
v_weight_data_int8_scales |
float |
[embed_dim] |
out_weight_data_int8_scales |
float |
[1] |
if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob
if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel
if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob
if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel
param id |
name |
type |
default |
description |
0 |
normalize_variance |
int |
0 |
|
1 |
across_channels |
int |
0 |
|
2 |
eps |
float |
0.0001f |
x = x / (sqrt(var) + eps) |
if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob
if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel
if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position
y = x2 * scale
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
across_spatial |
int |
0 |
|
1 |
channel_shared |
int |
0 |
|
2 |
eps |
float |
0.0001f |
see eps mode |
3 |
scale_data_size |
int |
0 |
|
4 |
across_channel |
int |
0 |
|
9 |
eps_mode |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
Eps Mode:
- 0 = caffe/mxnet x = x / sqrt(var + eps)
- 1 = pytorch x = x / max(sqrt(var), eps)
- 2 = tensorflow x = x / sqrt(max(var, eps))
param id |
name |
type |
default |
description |
0 |
out_elempack |
int |
1 |
|
1 |
use_padding |
int |
0 |
|
2 |
cast_type_from |
int |
0 |
|
3 |
cast_type_to |
int |
0 |
|
4 |
storage_type_from |
int |
0 |
|
5 |
storage_type_to |
int |
0 |
|
param id |
name |
type |
default |
description |
0 |
top |
int |
0 |
|
1 |
bottom |
int |
0 |
|
2 |
left |
int |
0 |
|
3 |
right |
int |
0 |
|
4 |
type |
int |
0 |
|
5 |
value |
float |
0 |
|
6 |
per_channel_pad_data_size |
int |
0 |
|
7 |
front |
int |
stride_w |
|
8 |
behind |
int |
pad_left |
|
weight |
type |
shape |
per_channel_pad_data |
float |
[per_channel_pad_data_size] |
Padding type:
- 0 = CONSTANT
- 1 = REPLICATE
- 2 = REFLECT
param id |
name |
type |
default |
description |
0 |
order_type |
int |
0 |
|
Order Type:
- 0 = WH WHC WHDC
- 1 = HW HWC HWDC
- 2 = WCH WDHC
- 3 = CWH DWHC
- 4 = HCW HDWC
- 5 = CHW DHWC
- 6 = WHCD
- 7 = HWCD
- 8 = WCHD
- 9 = CWHD
- 10 = HCWD
- 11 = CHWD
- 12 = WDCH
- 13 = DWCH
- 14 = WCDH
- 15 = CWDH
- 16 = DCWH
- 17 = CDWH
- 18 = HDCW
- 19 = DHCW
- 20 = HCDW
- 21 = CHDW
- 22 = DCHW
- 23 = CDHW
if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc
if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh
param id |
name |
type |
default |
description |
0 |
upscale_factor |
int |
1 |
|
1 |
mode |
int |
0 |
|
x2 = pad(x, pads)
x3 = pooling(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
stride_h |
int |
stride_w |
|
13 |
pad_top |
int |
pad_left |
|
14 |
pad_right |
int |
pad_left |
|
15 |
pad_bottom |
int |
pad_top |
|
18 |
out_h |
int |
out_w |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
x2 = pad(x, pads)
x3 = pooling1d(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
14 |
pad_right |
int |
pad_left |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
x2 = pad(x, pads)
x3 = pooling3d(x2, kernel, stride)
param id |
name |
type |
default |
description |
0 |
pooling_type |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
stride_w |
int |
1 |
|
3 |
pad_left |
int |
0 |
|
4 |
global_pooling |
int |
0 |
|
5 |
pad_mode |
int |
0 |
|
6 |
avgpool_count_include_pad |
int |
0 |
|
7 |
adaptive_pooling |
int |
0 |
|
8 |
out_w |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
stride_h |
int |
stride_w |
|
13 |
pad_top |
int |
pad_left |
|
14 |
pad_right |
int |
pad_left |
|
15 |
pad_bottom |
int |
pad_top |
|
16 |
pad_behind |
int |
pad_front |
|
18 |
out_h |
int |
out_w |
|
21 |
kernel_d |
int |
kernel_w |
|
22 |
stride_d |
int |
stride_w |
|
23 |
pad_front |
int |
pad_left |
|
28 |
out_d |
int |
out_w |
|
Pooling type:
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
y = pow((shift + x * scale), power)
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
power |
float |
1.f |
|
1 |
scale |
float |
1.f |
|
2 |
shift |
float |
0.f |
|
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
num_slope |
int |
0 |
|
weight |
type |
shape |
slope_data |
float |
[num_slope] |
y = float2int8(x * scale)
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
1 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
param id |
name |
type |
default |
description |
0 |
operation |
int |
0 |
|
1 |
reduce_all |
int |
1 |
|
2 |
coeff |
float |
1.f |
|
3 |
axes |
array |
[ ] |
|
4 |
keepdims |
int |
0 |
|
5 |
fixbug0 |
int |
0 |
hack for bug fix, should be 1 |
Operation type:
- 0 = SUM
- 1 = ASUM
- 2 = SUMSQ
- 3 = MEAN
- 4 = MAX
- 5 = MIN
- 6 = PROD
- 7 = L1
- 8 = L2
- 9 = LogSum
- 10 = LogSumExp
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
slope |
float |
0.f |
|
if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc
if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh
param id |
name |
type |
default |
description |
0 |
stride |
int |
1 |
|
1 |
mode |
int |
0 |
|
x2 = x * scale_in + bias
x3 = activation(x2)
y = float2int8(x3 * scale_out)
param id |
name |
type |
default |
description |
0 |
scale_in_data_size |
int |
1 |
|
1 |
scale_out_data_size |
int |
1 |
|
2 |
bias_data_size |
int |
0 |
|
3 |
activation_type |
int |
0 |
|
4 |
activation_params |
int |
[ ] |
|
weight |
type |
shape |
scale_in_data |
float |
[scale_in_data_size] |
scale_out_data |
float |
[scale_out_data_size] |
bias_data |
float |
[bias_data_size] |
if permute == 1 y = hwc2chw(reshape(chw2hwc(x)))
else y = reshape(x)
param id |
name |
type |
default |
description |
0 |
w |
int |
-233 |
|
1 |
h |
int |
-233 |
|
11 |
d |
int |
-233 |
|
2 |
c |
int |
-233 |
|
3 |
permute |
int |
0 |
|
Reshape flag:
- 0 = copy from bottom
- -1 = remaining
- -233 = drop this dim(default)
split x along outmost axis into part x0, x1 ...
root mean square normalize for each part x0, x1 ...
y = x * gamma by elementwise
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
affine_size |
int |
0 |
|
1 |
eps |
float |
0.001f |
x = x / sqrt(var + eps) |
2 |
affine |
int |
1 |
|
weight |
type |
shape |
gamma_data |
float |
[affine_size] |
Apply a single-layer RNN to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = rnn(x)
y0, hidden y1 = rnn(x0, hidden x1)
- one_blob_only if bidirectional
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
hidden size of output |
1 |
weight_data_size |
int |
0 |
total size of weight matrix |
2 |
direction |
int |
0 |
0=forward, 1=reverse, 2=bidirectional |
weight |
type |
shape |
weight_xc_data |
float/fp16/int8 |
[input_size, num_output, num_directions] |
bias_c_data |
float/fp16/int8 |
[num_output, 1, num_directions] |
weight_hc_data |
float/fp16/int8 |
[num_output, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
if scale_data_size == -233 y = x0 * x1
else y = x * scale + bias
- one_blob_only if scale_data_size != -233
- support_inplace
param id |
name |
type |
default |
description |
0 |
scale_data_size |
int |
0 |
|
1 |
bias_term |
int |
0 |
|
weight |
type |
shape |
scale_data |
float |
[scale_data_size] |
bias_data |
float |
[scale_data_size] |
if x < 0 y = (exp(x) - 1.f) * alpha * lambda
else y = x * lambda
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
alpha |
float |
1.67326324f |
|
1 |
lambda |
float |
1.050700987f |
|
if x < -lambd y = x + bias
if x > lambd y = x - bias
else y = x
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
bias |
float |
0.0f |
|
1 |
lambd |
float |
0.5f |
|
if reverse == 0 y = shufflechannel(x) by group
if reverse == 1 y = shufflechannel(x) by channel / group
param id |
name |
type |
default |
description |
0 |
group |
int |
1 |
|
1 |
reverse |
int |
0 |
|
- one_blob_only
- support_inplace
split x along axis into slices, each part slice size is based on slices array
param id |
name |
type |
default |
description |
0 |
slices |
array |
[ ] |
|
1 |
axis |
int |
0 |
|
2 |
indices |
array |
[ ] |
|
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
1 |
fixbug0 |
int |
0 |
hack for bug fix, should be 1 |
- one_blob_only
- support_inplace
x1 = pad(x) if center
y = stft(x1)
y = y / sqrt(norm) if normalized
if power == 0 return y as real
if power == 1 return magnitude
if power == 2 return square of magnitude
param id |
name |
type |
default |
description |
0 |
n_fft |
int |
0 |
|
1 |
power |
int |
0 |
|
2 |
hoplen |
int |
n_fft / 4 |
|
3 |
winlen |
int |
n_fft |
|
4 |
window_type |
int |
0 |
0=ones 1=hann 2=hamming |
5 |
center |
int |
1 |
|
6 |
pad_type |
int |
2 |
0=CONSTANT 1=REPLICATE 2=REFLECT |
7 |
normalized |
int |
0 |
0=no 1=n_fft 2=window-l2-energy |
8 |
onesided |
int |
1 |
|
- one_blob_only
- support_inplace
- one_blob_only
- support_inplace
if x > threshold y = 1
else y = 0
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
threshold |
float |
0.f |
|
y = repeat tiles along axis for x
param id |
name |
type |
default |
description |
0 |
axis |
int |
0 |
|
1 |
tiles |
int |
1 |
|
2 |
repeats |
array |
[ ] |
|
- one_blob_only
- support_inplace
param id |
name |
type |
default |
description |
0 |
op_type |
int |
0 |
Operation type as follows |
Operation type:
- 0 = ABS
- 1 = NEG
- 2 = FLOOR
- 3 = CEIL
- 4 = SQUARE
- 5 = SQRT
- 6 = RSQ
- 7 = EXP
- 8 = LOG
- 9 = SIN
- 10 = COS
- 11 = TAN
- 12 = ASIN
- 13 = ACOS
- 14 = ATAN
- 15 = RECIPROCAL
- 16 = TANH
- 17 = LOG10
- 18 = ROUND
- 19 = TRUNC
param id |
name |
type |
default |
description |
0 |
num_output |
int |
0 |
|
1 |
kernel_w |
int |
0 |
|
2 |
dilation_w |
int |
1 |
|
3 |
stride_w |
int |
1 |
|
4 |
pad_left |
int |
0 |
|
11 |
kernel_h |
int |
kernel_w |
|
12 |
dilation_h |
int |
dilation_w |
|
13 |
stride_h |
int |
stride_w |
|
14 |
pad_top |
int |
pad_left |
|
15 |
pad_right |
int |
pad_left |
|
16 |
pad_bottom |
int |
pad_top |
|