|
| 1 | +import os |
| 2 | +from PIL import Image |
| 3 | +from torchvision import transforms |
| 4 | +import glob |
| 5 | +from torch.utils.data import Dataset |
| 6 | +from utils.mvtec3d_util import * |
| 7 | +from torch.utils.data import DataLoader |
| 8 | +import numpy as np |
| 9 | + |
| 10 | +def eyecandies_classes(): |
| 11 | + return [ |
| 12 | + 'CandyCane', |
| 13 | + 'ChocolateCookie', |
| 14 | + 'ChocolatePraline', |
| 15 | + 'Confetto', |
| 16 | + 'GummyBear', |
| 17 | + 'HazelnutTruffle', |
| 18 | + 'LicoriceSandwich', |
| 19 | + 'Lollipop', |
| 20 | + 'Marshmallow', |
| 21 | + 'PeppermintCandy', |
| 22 | + ] |
| 23 | + |
| 24 | +def mvtec3d_classes(): |
| 25 | + return [ |
| 26 | + "bagel", |
| 27 | + "cable_gland", |
| 28 | + "carrot", |
| 29 | + "cookie", |
| 30 | + "dowel", |
| 31 | + "foam", |
| 32 | + "peach", |
| 33 | + "potato", |
| 34 | + "rope", |
| 35 | + "tire", |
| 36 | + ] |
| 37 | + |
| 38 | +RGB_SIZE = 224 |
| 39 | + |
| 40 | +class BaseAnomalyDetectionDataset(Dataset): |
| 41 | + |
| 42 | + def __init__(self, split, class_name, img_size, dataset_path='datasets/eyecandies_preprocessed'): |
| 43 | + self.IMAGENET_MEAN = [0.485, 0.456, 0.406] |
| 44 | + self.IMAGENET_STD = [0.229, 0.224, 0.225] |
| 45 | + self.cls = class_name |
| 46 | + self.size = img_size |
| 47 | + self.img_path = os.path.join(dataset_path, self.cls, split) |
| 48 | + self.rgb_transform = transforms.Compose( |
| 49 | + [transforms.Resize((RGB_SIZE, RGB_SIZE), interpolation=transforms.InterpolationMode.BICUBIC), |
| 50 | + transforms.ToTensor(), |
| 51 | + transforms.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)]) |
| 52 | + |
| 53 | +class PreTrainTensorDataset(Dataset): |
| 54 | + def __init__(self, root_path): |
| 55 | + super().__init__() |
| 56 | + self.root_path = root_path |
| 57 | + self.tensor_paths = os.listdir(self.root_path) |
| 58 | + |
| 59 | + |
| 60 | + def __len__(self): |
| 61 | + return len(self.tensor_paths) |
| 62 | + |
| 63 | + def __getitem__(self, idx): |
| 64 | + tensor_path = self.tensor_paths[idx] |
| 65 | + |
| 66 | + tensor = torch.load(os.path.join(self.root_path, tensor_path)) |
| 67 | + |
| 68 | + label = 0 |
| 69 | + |
| 70 | + return tensor, label |
| 71 | + |
| 72 | +class TrainDataset(BaseAnomalyDetectionDataset): |
| 73 | + def __init__(self, class_name, img_size, dataset_path='datasets/eyecandies_preprocessed'): |
| 74 | + super().__init__(split="train", class_name=class_name, img_size=img_size, dataset_path=dataset_path) |
| 75 | + self.img_paths, self.labels = self.load_dataset() # self.labels => good : 0, anomaly : 1 |
| 76 | + |
| 77 | + def load_dataset(self): |
| 78 | + img_tot_paths = [] |
| 79 | + tot_labels = [] |
| 80 | + rgb_paths = glob.glob(os.path.join(self.img_path, 'good', 'rgb') + "/*.png") |
| 81 | + tiff_paths = glob.glob(os.path.join(self.img_path, 'good', 'xyz') + "/*.tiff") |
| 82 | + rgb_paths.sort() |
| 83 | + tiff_paths.sort() |
| 84 | + sample_paths = list(zip(rgb_paths, tiff_paths)) |
| 85 | + img_tot_paths.extend(sample_paths) |
| 86 | + tot_labels.extend([0] * len(sample_paths)) |
| 87 | + return img_tot_paths, tot_labels |
| 88 | + |
| 89 | + def __len__(self): |
| 90 | + return len(self.img_paths) |
| 91 | + |
| 92 | + def __getitem__(self, idx): |
| 93 | + img_path, label = self.img_paths[idx], self.labels[idx] |
| 94 | + rgb_path = img_path[0] |
| 95 | + tiff_path = img_path[1] |
| 96 | + img = Image.open(rgb_path).convert('RGB') |
| 97 | + |
| 98 | + img = self.rgb_transform(img) |
| 99 | + organized_pc = read_tiff_organized_pc(tiff_path) |
| 100 | + |
| 101 | + depth_map_3channel = np.repeat(organized_pc_to_depth_map(organized_pc)[:, :, np.newaxis], 3, axis=2) |
| 102 | + resized_depth_map_3channel = resize_organized_pc(depth_map_3channel) |
| 103 | + resized_organized_pc = resize_organized_pc(organized_pc, target_height=self.size, target_width=self.size) |
| 104 | + resized_organized_pc = resized_organized_pc.clone().detach().float() |
| 105 | + |
| 106 | + return (img, resized_organized_pc, resized_depth_map_3channel), label |
| 107 | + |
| 108 | + |
| 109 | +class TestDataset(BaseAnomalyDetectionDataset): |
| 110 | + def __init__(self, class_name, img_size, dataset_path='datasets/eyecandies_preprocessed'): |
| 111 | + super().__init__(split="test", class_name=class_name, img_size=img_size, dataset_path=dataset_path) |
| 112 | + self.gt_transform = transforms.Compose([ |
| 113 | + transforms.Resize((RGB_SIZE, RGB_SIZE), interpolation=transforms.InterpolationMode.NEAREST), |
| 114 | + transforms.ToTensor()]) |
| 115 | + self.img_paths, self.gt_paths, self.labels = self.load_dataset() # self.labels => good : 0, anomaly : 1 |
| 116 | + |
| 117 | + def load_dataset(self): |
| 118 | + img_tot_paths = [] |
| 119 | + gt_tot_paths = [] |
| 120 | + tot_labels = [] |
| 121 | + defect_types = os.listdir(self.img_path) |
| 122 | + |
| 123 | + for defect_type in defect_types: |
| 124 | + if defect_type == 'good': |
| 125 | + rgb_paths = glob.glob(os.path.join(self.img_path, defect_type, 'rgb') + "/*.png") |
| 126 | + tiff_paths = glob.glob(os.path.join(self.img_path, defect_type, 'xyz') + "/*.tiff") |
| 127 | + rgb_paths.sort() |
| 128 | + tiff_paths.sort() |
| 129 | + sample_paths = list(zip(rgb_paths, tiff_paths)) |
| 130 | + img_tot_paths.extend(sample_paths) |
| 131 | + gt_tot_paths.extend([0] * len(sample_paths)) |
| 132 | + tot_labels.extend([0] * len(sample_paths)) |
| 133 | + else: |
| 134 | + rgb_paths = glob.glob(os.path.join(self.img_path, defect_type, 'rgb') + "/*.png") |
| 135 | + tiff_paths = glob.glob(os.path.join(self.img_path, defect_type, 'xyz') + "/*.tiff") |
| 136 | + gt_paths = glob.glob(os.path.join(self.img_path, defect_type, 'gt') + "/*.png") |
| 137 | + rgb_paths.sort() |
| 138 | + tiff_paths.sort() |
| 139 | + gt_paths.sort() |
| 140 | + sample_paths = list(zip(rgb_paths, tiff_paths)) |
| 141 | + |
| 142 | + img_tot_paths.extend(sample_paths) |
| 143 | + gt_tot_paths.extend(gt_paths) |
| 144 | + tot_labels.extend([1] * len(sample_paths)) |
| 145 | + |
| 146 | + assert len(img_tot_paths) == len(gt_tot_paths), "Something wrong with test and ground truth pair!" |
| 147 | + |
| 148 | + return img_tot_paths, gt_tot_paths, tot_labels |
| 149 | + |
| 150 | + def __len__(self): |
| 151 | + return len(self.img_paths) |
| 152 | + |
| 153 | + def __getitem__(self, idx): |
| 154 | + img_path, gt, label = self.img_paths[idx], self.gt_paths[idx], self.labels[idx] |
| 155 | + rgb_path = img_path[0] |
| 156 | + tiff_path = img_path[1] |
| 157 | + img_original = Image.open(rgb_path).convert('RGB') |
| 158 | + img = self.rgb_transform(img_original) |
| 159 | + |
| 160 | + organized_pc = read_tiff_organized_pc(tiff_path) |
| 161 | + depth_map_3channel = np.repeat(organized_pc_to_depth_map(organized_pc)[:, :, np.newaxis], 3, axis=2) |
| 162 | + resized_depth_map_3channel = resize_organized_pc(depth_map_3channel) |
| 163 | + resized_organized_pc = resize_organized_pc(organized_pc, target_height=self.size, target_width=self.size) |
| 164 | + resized_organized_pc = resized_organized_pc.clone().detach().float() |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | + |
| 169 | + if gt == 0: |
| 170 | + gt = torch.zeros( |
| 171 | + [1, resized_depth_map_3channel.size()[-2], resized_depth_map_3channel.size()[-2]]) |
| 172 | + else: |
| 173 | + gt = Image.open(gt).convert('L') |
| 174 | + gt = self.gt_transform(gt) |
| 175 | + gt = torch.where(gt > 0.5, 1., .0) |
| 176 | + |
| 177 | + return (img, resized_organized_pc, resized_depth_map_3channel), gt[:1], label, rgb_path |
| 178 | + |
| 179 | + |
| 180 | +def get_data_loader(split, class_name, img_size, args): |
| 181 | + if split in ['train']: |
| 182 | + dataset = TrainDataset(class_name=class_name, img_size=img_size, dataset_path=args.dataset_path) |
| 183 | + elif split in ['test']: |
| 184 | + dataset = TestDataset(class_name=class_name, img_size=img_size, dataset_path=args.dataset_path) |
| 185 | + |
| 186 | + data_loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=1, drop_last=False, |
| 187 | + pin_memory=True) |
| 188 | + return data_loader |
0 commit comments