|
| 1 | +// Edmond-Karp algorithm is an implementation of the Ford-Fulkerson method |
| 2 | +// to compute max-flow between a pair of source-sink vertices in a weighted graph |
| 3 | +// It uses BFS (Breadth First Search) to find the residual paths |
| 4 | +// Time Complexity: O(V * E^2) where V is the number of vertices and E is the number of edges |
| 5 | +// Space Complexity: O(V + E) Because we keep residual graph in size of the original graph |
| 6 | +// Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press. |
| 7 | + |
| 8 | +package graph |
| 9 | + |
| 10 | +import ( |
| 11 | + "math" |
| 12 | +) |
| 13 | + |
| 14 | +// Returns a mapping of vertices as path, if there is any from source to sink |
| 15 | +// Otherwise, returns nil |
| 16 | +func FindPath(rGraph WeightedGraph, source int, sink int) map[int]int { |
| 17 | + queue := make([]int, 0) |
| 18 | + marked := make([]bool, len(rGraph)) |
| 19 | + marked[source] = true |
| 20 | + queue = append(queue, source) |
| 21 | + parent := make(map[int]int) |
| 22 | + |
| 23 | + // BFS loop with saving the path found |
| 24 | + for len(queue) > 0 { |
| 25 | + v := queue[0] |
| 26 | + queue = queue[1:] |
| 27 | + for i := 0; i < len(rGraph[v]); i++ { |
| 28 | + if !marked[i] && rGraph[v][i] > 0 { |
| 29 | + parent[i] = v |
| 30 | + // Terminate the BFS, if we reach to sink |
| 31 | + if i == sink { |
| 32 | + return parent |
| 33 | + } |
| 34 | + marked[i] = true |
| 35 | + queue = append(queue, i) |
| 36 | + } |
| 37 | + } |
| 38 | + } |
| 39 | + // source and sink are not in the same connected component |
| 40 | + return nil |
| 41 | +} |
| 42 | + |
| 43 | +func EdmondKarp(graph WeightedGraph, source int, sink int) float64 { |
| 44 | + // Check graph emptiness |
| 45 | + if len(graph) == 0 { |
| 46 | + return 0.0 |
| 47 | + } |
| 48 | + |
| 49 | + // Check correct dimensions of the graph slice |
| 50 | + for i := 0; i < len(graph); i++ { |
| 51 | + if len(graph[i]) != len(graph) { |
| 52 | + return 0.0 |
| 53 | + } |
| 54 | + } |
| 55 | + |
| 56 | + rGraph := make(WeightedGraph, len(graph)) |
| 57 | + for i := 0; i < len(graph); i++ { |
| 58 | + rGraph[i] = make([]float64, len(graph)) |
| 59 | + } |
| 60 | + // Init the residual graph with the same capacities as the original graph |
| 61 | + copy(rGraph, graph) |
| 62 | + |
| 63 | + maxFlow := 0.0 |
| 64 | + |
| 65 | + for { |
| 66 | + parent := FindPath(rGraph, source, sink) |
| 67 | + if parent == nil { |
| 68 | + break |
| 69 | + } |
| 70 | + // Finding the max flow over the path returned by BFS |
| 71 | + // i.e. finding minimum residual capacity amonth the path edges |
| 72 | + pathFlow := math.MaxFloat64 |
| 73 | + for v := sink; v != source; v = parent[v] { |
| 74 | + u := parent[v] |
| 75 | + if rGraph[u][v] < pathFlow { |
| 76 | + pathFlow = rGraph[u][v] |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + // update residual capacities of the edges and |
| 81 | + // reverse edges along the path |
| 82 | + for v := sink; v != source; v = parent[v] { |
| 83 | + u := parent[v] |
| 84 | + rGraph[u][v] -= pathFlow |
| 85 | + rGraph[v][u] += pathFlow |
| 86 | + } |
| 87 | + |
| 88 | + // Update the total flow found so far |
| 89 | + maxFlow += pathFlow |
| 90 | + } |
| 91 | + |
| 92 | + return maxFlow |
| 93 | +} |
0 commit comments