-
-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathBoothsAlgorithm.js
80 lines (74 loc) · 2.92 KB
/
BoothsAlgorithm.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
* Booth's Algorithm finds the lexicographically minimal rotation of a string.
* Time Complexity: O(n) - Linear time where n is the length of input string
* Space Complexity: O(n) - Linear space for failure function array
* For More Visit - https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm
* @example
* Input: "baca"
* All possible rotations:
* - "baca"
* - "acab"
* - "caba"
* - "abac"
* Output: "abac" (lexicographically smallest)
*
* How it works:
* 1. Doubles the input string to handle all rotations
* 2. Uses failure function (similar to KMP) to find minimal rotation
* 3. Maintains a pointer to the start of minimal rotation found so far
* @param {string} str - Input string to find minimal rotation
* @returns {string} - Lexicographically minimal rotation of the input string
* @throws {Error} - If input is not a string or is empty
*/
export function findMinimalRotation(str) {
if (typeof str !== 'string') {
throw new Error('Input must be a string')
}
if (str.length === 0) {
throw new Error('Input string cannot be empty')
}
// Double the string for rotation comparison
// This allows us to check all rotations by just sliding a window
const s = str + str
const n = s.length
// Initialize failure function array
const f = new Array(n).fill(-1)
let k = 0 // Starting position of minimal rotation
//Algorithm's implementation
// Iterate through the doubled string
// j is the current position we're examining
for (let j = 1; j < n; j++) {
// i is the length of the matched prefix in the current candidate
// Get the failure function value for the previous position
let i = f[j - k - 1]
// This loop handles the case when we need to update our current minimal rotation
// It compares characters and finds if there's a better (lexicographically smaller) rotation
while (i !== -1 && s[j] !== s[k + i + 1]) {
// If we find a smaller character, we've found a better rotation
// Update k to the new starting position
if (s[j] < s[k + i + 1]) {
// j-i-1 gives us the starting position of the new minimal rotation
k = j - i - 1
}
// Update i using the failure function to try shorter prefixes
i = f[i]
}
// This block updates the failure function and handles new character comparisons
if (i === -1 && s[j] !== s[k + i + 1]) {
// If current character is smaller, update the minimal rotation start
if (s[j] < s[k + i + 1]) {
k = j
}
//If no match found,mark failure function accordingly
f[j - k] = -1
} else {
//If match found, extend the matched length
f[j - k] = i + 1
}
}
// After finding k (the starting position of minimal rotation):
// 1. slice(k): Take substring from position k to end
// 2. slice(0, k): Take substring from start to position k
// 3. Concatenate them to get the minimal rotation
return str.slice(k) + str.slice(0, k)
}