-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusefulTransform.py
35 lines (27 loc) · 1.01 KB
/
usefulTransform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
img_path = "hymenoptera_data/train/ants/9715481_b3cb4114ff.jpg"
img = Image.open(img_path)
writer = SummaryWriter("logs")
print(img)
# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ant", img_tensor)
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([8, 2, 4], [2, 5, 5]) # 一个是三个通道的均值,一个是三个通道的标准差值
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Nomalize", img_norm, 1)
# resize
print(img.size)
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img)
print(img_resize)
# Compose
trans_resize_2 = transforms.Resize(512)
# 相当于是一个管道,trans_resize_2转换的输出就是trans_totensor的输入;这里就是PIL -> PIL -> tensor
img_compose = transforms.Compose([trans_resize_2, trans_totensor]) # 组合几种变化
writer.close()