6565 "name" : " stdout" ,
6666 "output_type" : " stream" ,
6767 "text" : [
68- " Data fetching...\n " ,
69- " Data scaling...\n "
68+ " Data fetching...\n "
7069 ]
7170 }
7271 ],
7675 " \n " ,
7776 " # Load data from https://www.openml.org/d/554\n " ,
7877 " print('Data fetching...')\n " ,
79- " X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False, data_home=data_home)\n " ,
80- " \n " ,
78+ " X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False, data_home=data_home)"
79+ ]
80+ },
81+ {
82+ "cell_type" : " code" ,
83+ "execution_count" : 3 ,
84+ "metadata" : {},
85+ "outputs" : [
86+ {
87+ "name" : " stdout" ,
88+ "output_type" : " stream" ,
89+ "text" : [
90+ " Data scaling...\n "
91+ ]
92+ }
93+ ],
94+ "source" : [
8195 " random_state = check_random_state(0)\n " ,
8296 " permutation = random_state.permutation(X.shape[0])\n " ,
8397 " X = X[permutation]\n " ,
106120 },
107121 {
108122 "cell_type" : " code" ,
109- "execution_count" : 3 ,
123+ "execution_count" : 4 ,
110124 "metadata" : {
111125 "pycharm" : {
112126 "name" : " #%%\n "
119133 "text" : [
120134 " Model fit...\n " ,
121135 " Model score...\n " ,
122- " Sparsity with L1 penalty: 61.53 %\n " ,
123- " Test score with L1 penalty: 0.8325 \n "
136+ " Sparsity with L1 penalty: 77.93 %\n " ,
137+ " Test score with L1 penalty: 0.8298 \n "
124138 ]
125139 }
126140 ],
158172 },
159173 {
160174 "cell_type" : " code" ,
161- "execution_count" : 4 ,
175+ "execution_count" : 5 ,
162176 "metadata" : {
163177 "pycharm" : {
164178 "name" : " #%%\n "
184198 },
185199 {
186200 "cell_type" : " code" ,
187- "execution_count" : 5 ,
201+ "execution_count" : 6 ,
188202 "metadata" : {
189203 "pycharm" : {
190204 "name" : " #%%\n "
201215 " '../data/sklearn-mnist-1/__commits',\n " ,
202216 " '../data/sklearn-mnist-1/__schema']\n " ,
203217 " \n " ,
204- " Key: Sparsity_with_L1_penalty, Value: 61.530612244897966 \n " ,
218+ " Key: Sparsity_with_L1_penalty, Value: 77.93367346938776 \n " ,
205219 " Key: TILEDB_ML_MODEL_ML_FRAMEWORK, Value: SKLEARN\n " ,
206220 " Key: TILEDB_ML_MODEL_ML_FRAMEWORK_VERSION, Value: 1.0.2\n " ,
207221 " Key: TILEDB_ML_MODEL_PREVIEW, Value: LogisticRegression(C=0.01, penalty='l1', solver='saga', tol=0.1)\n " ,
208222 " Key: TILEDB_ML_MODEL_PYTHON_VERSION, Value: 3.7.13\n " ,
209223 " Key: TILEDB_ML_MODEL_STAGE, Value: STAGING\n " ,
210- " Key: score, Value: 0.8325 \n "
224+ " Key: score, Value: 0.8298 \n "
211225 ]
212226 }
213227 ],
236250 },
237251 {
238252 "cell_type" : " code" ,
239- "execution_count" : 6 ,
253+ "execution_count" : 7 ,
240254 "metadata" : {
241255 "pycharm" : {
242256 "name" : " #%%\n "
247261 "name" : " stdout" ,
248262 "output_type" : " stream" ,
249263 "text" : [
250- " Key: Sparsity_with_L1_penalty, Value: 61.530612244897966 \n " ,
264+ " Key: Sparsity_with_L1_penalty, Value: 77.93367346938776 \n " ,
251265 " Key: TILEDB_ML_MODEL_ML_FRAMEWORK, Value: SKLEARN\n " ,
252266 " Key: TILEDB_ML_MODEL_ML_FRAMEWORK_VERSION, Value: 1.0.2\n " ,
253267 " Key: TILEDB_ML_MODEL_PREVIEW, Value: LogisticRegression(C=0.01, penalty='l1', solver='saga', tol=0.1)\n " ,
254268 " Key: TILEDB_ML_MODEL_PYTHON_VERSION, Value: 3.7.13\n " ,
255269 " Key: TILEDB_ML_MODEL_STAGE, Value: STAGING\n " ,
256270 " Key: new_meta, Value: [\" Any kind of info\" ]\n " ,
257- " Key: score, Value: 0.8325 \n "
271+ " Key: score, Value: 0.8298 \n "
258272 ]
259273 }
260274 ],
281295 },
282296 {
283297 "cell_type" : " code" ,
284- "execution_count" : 7 ,
298+ "execution_count" : 8 ,
285299 "metadata" : {
286300 "pycharm" : {
287301 "name" : " #%%\n "
293307 "output_type" : " stream" ,
294308 "text" : [
295309 " Model score...\n " ,
296- " Sparsity with L1 penalty: 61.53 %\n " ,
297- " Test score with L1 penalty: 0.8325 \n " ,
310+ " Sparsity with L1 penalty: 77.93 %\n " ,
311+ " Test score with L1 penalty: 0.8298 \n " ,
298312 " Model fit...\n " ,
299313 " Model score...\n " ,
300- " Sparsity with L1 penalty: 46.21 %\n " ,
301- " Test score with L1 penalty: 0.7401 \n " ,
314+ " Sparsity with L1 penalty: 44.07 %\n " ,
315+ " Test score with L1 penalty: 0.7194 \n " ,
302316 " \n " ,
303317 " ['../data/sklearn-mnist-1/__fragment_meta',\n " ,
304318 " '../data/sklearn-mnist-1/__meta',\n " ,
311325 " number of fragments: 2\n " ,
312326 " \n " ,
313327 " ===== FRAGMENT NUMBER 0 =====\n " ,
314- " timestamp range: (1660134739235, 1660134739235 )\n " ,
328+ " timestamp range: (1664858394611, 1664858394611 )\n " ,
315329 " number of unconsolidated metadata: 2\n " ,
316- " version: 14 \n " ,
330+ " version: 15 \n " ,
317331 " \n " ,
318332 " ===== FRAGMENT NUMBER 1 =====\n " ,
319- " timestamp range: (1660134745067, 1660134745067 )\n " ,
333+ " timestamp range: (1664858399506, 1664858399506 )\n " ,
320334 " number of unconsolidated metadata: 2\n " ,
321- " version: 14 \n "
335+ " version: 15 \n "
322336 ]
323337 }
324338 ],
390404 },
391405 {
392406 "cell_type" : " code" ,
393- "execution_count" : 8 ,
407+ "execution_count" : 9 ,
394408 "metadata" : {
395409 "pycharm" : {
396410 "name" : " #%%\n "
402416 "output_type" : " stream" ,
403417 "text" : [
404418 " Fit...\n " ,
405- " Test score: 0.7698 \n "
419+ " Test score: 0.7755 \n "
406420 ]
407421 }
408422 ],
436450 },
437451 {
438452 "cell_type" : " code" ,
439- "execution_count" : 9 ,
453+ "execution_count" : 10 ,
440454 "metadata" : {
441455 "pycharm" : {
442456 "name" : " #%%\n "
449463 " '../data/tiledb-sklearn-mnist/sklearn-mnist-2'"
450464 ]
451465 },
452- "execution_count" : 9 ,
466+ "execution_count" : 10 ,
453467 "metadata" : {},
454468 "output_type" : " execute_result"
455469 }
470484 },
471485 {
472486 "cell_type" : " code" ,
473- "execution_count" : 10 ,
487+ "execution_count" : 11 ,
474488 "metadata" : {
475489 "pycharm" : {
476490 "name" : " #%%\n "
512526 },
513527 "nbformat" : 4 ,
514528 "nbformat_minor" : 4
515- }
529+ }
0 commit comments