Skip to content

Latest commit

 

History

History
32 lines (25 loc) · 929 Bytes

README.md

File metadata and controls

32 lines (25 loc) · 929 Bytes

DeepNAP

Citekey KimEtAl2018DeepNAP
Source Code own
Learning type semi-supervised
Input dimensionality multivariate

Dependencies

  • python 3
  • pytorch

Notes

DeepNAP outputs anomaly scores for windows. The results require post-processing. The scores for each point can be assigned by aggregating the anomaly scores for each window the point is included in.

You can use the following code snippet for the post-processing step in TimeEval (default parameters directly filled in from the source code):

from timeeval.utils.window import ReverseWindowing
# post-processing for DeepNAP
def post_deepnap(scores: np.ndarray, args: dict) -> np.ndarray:
    window_size = args.get("hyper_params", {}).get("anomaly_window_size", 15)
    return ReverseWindowing(window_size=window_size * 2).fit_transform(scores)