Skip to content

Commit a945f17

Browse files
authored
Add files via upload
1 parent c898864 commit a945f17

6 files changed

+159
-150
lines changed

Collaborative_Filter.ipynb

+18-78
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": 50,
5+
"execution_count": 6,
66
"metadata": {
77
"collapsed": true
88
},
@@ -11,14 +11,7 @@
1111
"name": "stdout",
1212
"output_type": "stream",
1313
"text": [
14-
"(1682L, 943L) (1682L, 943L)"
15-
]
16-
},
17-
{
18-
"name": "stdout",
19-
"output_type": "stream",
20-
"text": [
21-
"\n[[5 4 0 0 4]\n [3 0 0 0 3]\n [4 0 0 0 0]\n [3 0 0 0 0]\n [3 0 0 0 0]]\nAverage rating for movie 1 (Toy Story): 4.520679 / 5\n"
14+
"(1682L, 943L) (1682L, 943L)\n[[5 4 0 0 4]\n [3 0 0 0 3]\n [4 0 0 0 0]\n [3 0 0 0 0]\n [3 0 0 0 0]]\nAverage rating for movie 1 (Toy Story): 3.878319 / 5\n"
2215
]
2316
}
2417
],
@@ -37,15 +30,15 @@
3730
"print Y.shape,R.shape\n",
3831
"print Y[0:5,0:5]\n",
3932
"print 'Average rating for movie 1 (Toy Story): %f / 5'\\\n",
40-
" %(np.mean(Y[0,R[0,:]]))\n",
33+
" %(np.mean(Y[0,R[0,:]==1]))\n",
4134
"\n",
4235
"\n",
4336
"\n"
4437
]
4538
},
4639
{
4740
"cell_type": "code",
48-
"execution_count": 51,
41+
"execution_count": 7,
4942
"metadata": {},
5043
"outputs": [
5144
{
@@ -71,7 +64,7 @@
7164
},
7265
{
7366
"cell_type": "code",
74-
"execution_count": 52,
67+
"execution_count": 8,
7568
"metadata": {},
7669
"outputs": [
7770
{
@@ -116,7 +109,7 @@
116109
},
117110
{
118111
"cell_type": "code",
119-
"execution_count": 53,
112+
"execution_count": 9,
120113
"metadata": {},
121114
"outputs": [],
122115
"source": [
@@ -157,14 +150,14 @@
157150
},
158151
{
159152
"cell_type": "code",
160-
"execution_count": 44,
153+
"execution_count": 10,
161154
"metadata": {},
162155
"outputs": [
163156
{
164157
"name": "stdout",
165158
"output_type": "stream",
166159
"text": [
167-
"[[ 0.14401176 -6.22590369 10.0516782 0.14401176 -6.22590369\n 10.0516782 ]\n [ 4.45625126 2.03223863 7.35329766 4.45625126 2.03223863\n 7.35329766]\n [ 0.11515446 -9.74467008 -1.91337529 0.11515446 -9.74467008\n -1.91337529]\n [ 0.90141124 -1.28554704 1.55376368 0.90141124 -1.28554704\n 1.55376368]]\n[[ -0.12785057 -0.73651273 -1.21583757 -0.12785057 -0.73651273\n -1.21583757]\n [ -2.72597491 4.66380798 0.23347243 -2.72597491 4.66380798\n 0.23347243]\n [ -0.42229439 -0.40927681 -11.5753487 -0.42229439 -0.40927681\n -11.5753487 ]\n [ 3.61809669 12.26402186 7.18521682 3.61809669 12.26402186\n 7.18521682]\n [ 1.15495755 -1.53477221 -2.08059821 1.15495755 -1.53477221\n -2.08059821]]\nx max relative error: 4.429443e-10\ntheta max relative error: 4.670187e-10\n"
160+
"[[ 3.2694473 0.82260885 0.34742436 3.2694473 0.82260885 0.34742436]\n [ 0.60548622 -5.29818853 -8.71667995 0.60548622 -5.29818853 -8.71667995]\n [ 0.98872539 -5.60773103 -7.1520766 0.98872539 -5.60773103 -7.1520766 ]\n [ 1.27425229 5.80646836 -0.94849499 1.27425229 5.80646836 -0.94849499]]\n[[ -3.21431313 -0.73938093 -0.17662467 -3.21431313 -0.73938093\n -0.17662467]\n [ 1.62875238 -7.84411116 -10.54935153 1.62875238 -7.84411116\n -10.54935153]\n [ 1.04497469 0.56498113 1.51627789 1.04497469 0.56498113\n 1.51627789]\n [ 0.57523149 -0.36704409 0.23436928 0.57523149 -0.36704409\n 0.23436928]\n [ -1.08518528 -3.44655202 -0.38480487 -1.08518528 -3.44655202\n -0.38480487]]\nx max relative error: 5.289068e-10\ntheta max relative error: 2.211348e-10\n"
168161
]
169162
}
170163
],
@@ -205,7 +198,7 @@
205198
},
206199
{
207200
"cell_type": "code",
208-
"execution_count": 54,
201+
"execution_count": 11,
209202
"metadata": {},
210203
"outputs": [
211204
{
@@ -237,7 +230,7 @@
237230
},
238231
{
239232
"cell_type": "code",
240-
"execution_count": 55,
233+
"execution_count": 12,
241234
"metadata": {},
242235
"outputs": [
243236
{
@@ -273,7 +266,7 @@
273266
},
274267
{
275268
"cell_type": "code",
276-
"execution_count": 60,
269+
"execution_count": 13,
277270
"metadata": {},
278271
"outputs": [
279272
{
@@ -325,14 +318,14 @@
325318
},
326319
{
327320
"cell_type": "code",
328-
"execution_count": 69,
321+
"execution_count": 15,
329322
"metadata": {},
330323
"outputs": [
331324
{
332325
"name": "stdout",
333326
"output_type": "stream",
334327
"text": [
335-
"Warning: Maximum number of iterations has been exceeded.\n Current function value: 27769.265138\n Iterations: 100\n Function evaluations: 152\n Gradient evaluations: 152\n(1682L, 10L) (944L, 10L)\n(1682L, 944L)\n[ 3.89489124 3.56569854 3.25036093 ..., 1.99989186 2.99999858\n 3.00004241]\nfavorite 1 score is 5,for:Return of the Jedi (1983) \nfavorite 2 score is 5,for:Star Wars (1977) \nfavorite 3 score is 5,for:Prefontaine (1997) \n"
328+
"Warning: Maximum number of iterations has been exceeded.\n Current function value: 27848.964019\n Iterations: 100\n Function evaluations: 149\n Gradient evaluations: 149\n(1682L, 10L) (944L, 10L)\n(1682L, 944L)\n[ 4.13867803 3.96850127 4.31376906 3.68773897 3.73023817]\nfavorite 1 score is 5,for:Princess Bride, The (1987) \nfavorite 2 score is 5,for:Star Wars (1977) \nfavorite 3 score is 5,for:Affair to Remember, An (1957) \nfavorite 4 score is 5,for:Entertaining Angels: The Dorothy Day Story (1996) \nfavorite 5 score is 5,for:Great Day in Harlem, A (1994) \nfavorite 6 score is 5,for:Prefontaine (1997) \nfavorite 7 score is 5,for:They Made Me a Criminal (1939) \nfavorite 8 score is 5,for:Santa with Muscles (1996) \nfavorite 9 score is 5,for:Aiqing wansui (1994) \nfavorite 10 score is 5,for:Saint of Fort Washington, The (1993) \n"
336329
]
337330
}
338331
],
@@ -387,74 +380,21 @@
387380
"print score.shape\n",
388381
"print my_score[:5]\n",
389382
"sort_index = my_score.argsort()\n",
390-
"favorite = 3\n",
383+
"favorite = 10\n",
391384
"for i in xrange(favorite):\n",
392385
" print \"favorite %d score is %d,for:%s\" \\\n",
393386
" %(i+1,my_score[sort_index[-(i+1)]],movieList[sort_index[-(i+1)]])"
394387
]
395388
},
396-
{
397-
"cell_type": "code",
398-
"execution_count": 49,
399-
"metadata": {},
400-
"outputs": [
401-
{
402-
"name": "stdout",
403-
"output_type": "stream",
404-
"text": [
405-
"Optimization terminated successfully.\n Current function value: 1.617021\n Iterations: 4\n Function evaluations: 8\n Gradient evaluations: 8\n[-1.80851064 -0.25531915]\n"
406-
]
407-
}
408-
],
409-
"source": [
410-
"#an example of optimize\n",
411-
"args = (2, 3, 7, 8, 9, 10) # parameter values\n",
412-
"def f(x, *args):\n",
413-
" \n",
414-
" u, v = x\n",
415-
" a, b, c, d, e, f = args\n",
416-
" return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f\n",
417-
"def gradf(x, *args):\n",
418-
" u, v = x\n",
419-
" a, b, c, d, e, f = args\n",
420-
" gu = 2*a*u + b*v + d # u-component of the gradient\n",
421-
" gv = b*u + 2*c*v + e # v-component of the gradient\n",
422-
" return np.asarray((gu, gv))\n",
423-
"x0 = np.asarray((0, 0)) # Initial guess.\n",
424-
"from scipy import optimize\n",
425-
"res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)\n",
426-
"print res1"
427-
]
428-
},
429-
{
430-
"cell_type": "code",
431-
"execution_count": 70,
432-
"metadata": {},
433-
"outputs": [
434-
{
435-
"name": "stdout",
436-
"output_type": "stream",
437-
"text": [
438-
"[0 3 2 4 1 5]\nfavorite 1 score is 6,for f\nfavorite 2 score is 5,for b\nfavorite 3 score is 4,for e\n"
439-
]
440-
}
441-
],
442-
"source": [
443-
"y = np.array([1,5,3,2,4,6])\n",
444-
"yy = ['a','b','c','d','e','f']\n",
445-
"index = np.argsort(y)\n",
446-
"print index\n",
447-
"for i in xrange(3):\n",
448-
" print \"favorite %d score is %d,for %s\" \\\n",
449-
" %(i+1,y[index[-(i+1)]],yy[index[-(i+1)]])\n"
450-
]
451-
},
452389
{
453390
"cell_type": "code",
454391
"execution_count": null,
455392
"metadata": {},
456393
"outputs": [],
457-
"source": []
394+
"source": [
395+
"\n",
396+
"\n"
397+
]
458398
}
459399
],
460400
"metadata": {

0 commit comments

Comments
 (0)