File tree 2 files changed +2
-20
lines changed 2 files changed +2
-20
lines changed Original file line number Diff line number Diff line change @@ -15,7 +15,7 @@ open import category-theory.precategory-of-functors
15
15
open import category-theory.products-of-precategories
16
16
17
17
open import foundation.action-on-identifications-functions
18
- open import foundation.cartesian-product-types
18
+ open import foundation.equality- cartesian-product-types
19
19
open import foundation.dependent-pair-types
20
20
open import foundation.identity-types
21
21
open import foundation.universe-levels
@@ -132,7 +132,7 @@ module CurryFunctor
132
132
= hom-functor-Precategory CD E F (comp-hom-Precategory CD
133
133
(f , id-hom-Precategory D)
134
134
(id-hom-Precategory C , g))
135
- by ap (hom-functor-Precategory CD E F) (identity-product
135
+ by ap (hom-functor-Precategory CD E F) (eq-pair
136
136
(left-unit-law-comp-hom-Precategory C f
137
137
∙ inv (right-unit-law-comp-hom-Precategory C f))
138
138
(right-unit-law-comp-hom-Precategory D g
Original file line number Diff line number Diff line change @@ -31,24 +31,6 @@ tr-product :
31
31
tr-product B C refl u = refl
32
32
```
33
33
34
- ### Identities of products
35
-
36
- ``` agda
37
- identity-product :
38
- {l1 l2 : Level}
39
- {A : UU l1} {B : UU l2}
40
- {a a' : A} {b b' : B}
41
- → a = a' → b = b' → (a , b) = (a' , b')
42
- identity-product refl refl = refl
43
-
44
- identity-product' :
45
- {l1 l2 : Level}
46
- {A : UU l1} {B : UU l2}
47
- {ab ab' : A × B}
48
- → pr1 ab = pr1 ab' → pr2 ab = pr2 ab' → ab = ab'
49
- identity-product' refl refl = refl
50
- ```
51
-
52
34
### Subuniverses closed under cartesian product types
53
35
54
36
``` agda
You can’t perform that action at this time.
0 commit comments