-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRGB2RAW.py
303 lines (241 loc) · 12.5 KB
/
RGB2RAW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import iio
import numpy as np
from scipy.stats import poisson, truncnorm
import torch
import torch.distributions as tdist
## Parse arguments
parser = argparse.ArgumentParser(description="Compute the noise and clean raw data from the RGB")
parser.add_argument("--sigma", type=float, default=0.015, help='std of the truncated gaussian')
parser.add_argument("--close", type=str , default="center")
parser.add_argument("--p" , type=int , default=1)
parser.add_argument("--first", type=int , default=1)
parser.add_argument("--last" , type=int , default=1)
parser.add_argument("--step", type=int , default=3)
parser.add_argument("--BL" , type=int , default=240)
parser.add_argument("--WL" , type=int , default=4095)
parser.add_argument("--input", type=str , default="")
parser.add_argument("--output", type=str , default="")
args = parser.parse_args()
## Functions
def alea(a, b):
return np.random.rand()*(b-a) + a
def trunc_gauss(a, b, mu, sigma):
"""
a and b are the borders
mu is the mean
sigma is the std
"""
alpha = (a - mu) / sigma
beta = (b - mu) / sigma
return truncnorm(a=alpha, b=beta, loc=mu, scale=sigma).rvs()
def random_ccm(distrib, close='center', sigma=1):
"""
Generates random RGB -> Camera color correction matrices.
distrib is either 'uniform' (for the training) or 'truncated_gaussian' for testing
close is either 'left' or 'center' or 'right', it represent whether the mean of the truncated gaussian is close to the left border, center (same mean as the uniform used for training) or close to the right. Ex: during training we have X ~ U(µ, µ-l, µ-l). 'left' will lead to a mean close to (µ-l), 'center' exactly equal to µ and 'right' close to (µ+l).
sigma: not used for the Uniform distrib, for the truncated distrib, this is its std.
"""
### Takes a random convex combination of XYZ -> Camera CCMs.
##xyz2cams = [[[1.0234, -0.2969, -0.2266],
## [-0.5625, 1.6328, -0.0469],
## [-0.0703, 0.2188, 0.6406]]
## ,
## [[0.4913, -0.0541, -0.0202],
## [-0.613, 1.3513, 0.2906],
## [-0.1564, 0.2151, 0.7183]],
## [[0.838, -0.263, -0.0639],
## [-0.2887, 1.0725, 0.2496],
## [-0.0627, 0.1427, 0.5438]],
## [[0.6596, -0.2079, -0.0562],
## [-0.4782, 1.3016, 0.1933],
## [-0.097, 0.1581, 0.5181]]]
#if distrib=='uniform':
# xyz2cam = torch.FloatTensor([[alea(0.4913, 1.0234), alea(-0.2969, -0.0541), alea(-0.2266, -0.0202)],
# [alea(-0.613, -0.2887), alea(1.0725, 1.6328), alea(-0.0469, 0.2906)],
# [alea(-0.1564, -0.0627), alea(0.1427, 0.2188), alea(0.5181, 0.7183)]])
#elif distrib=='truncated_gaussian':
# if close=='left':
# xyz2cam = torch.FloatTensor([[trunc_gauss(0.4913, 1.0234, 0.55, sigma), trunc_gauss(-0.2969, -0.0541, -0.24, sigma), trunc_gauss(-0.2266, -0.0202, -0.18, sigma)],
# [trunc_gauss(-0.613, -0.2887, -0.55, sigma), trunc_gauss(1.0725, 1.6328, 1.15, sigma), trunc_gauss(-0.0469, 0.2906, 0.05, sigma)],
# [trunc_gauss(-0.1564, -0.0627, -0.12, sigma), trunc_gauss(0.1427, 0.2188, 0.155, sigma), trunc_gauss(0.5181, 0.7183, 0.56, sigma)]])
# elif close=='center':
# xyz2cam = torch.FloatTensor([[trunc_gauss(0.4913, 1.0234, 0.75735, sigma), trunc_gauss(-0.2969, -0.0541, -0.17205, sigma), trunc_gauss(-0.2266, -0.0202, -0.1234, sigma)],
# [trunc_gauss(-0.613, -0.2887, -0.45085, sigma), trunc_gauss(1.0725, 1.6328, 1.35265, sigma), trunc_gauss(-0.0469, 0.2906, 0.12185, sigma)],
# [trunc_gauss(-0.1564, -0.0627, -0.10955, sigma), trunc_gauss(0.1427, 0.2188, 0.18075, sigma), trunc_gauss(0.5181, 0.7183, 0.6182, sigma)]])
# elif close=='right':
# xyz2cam = torch.FloatTensor([[trunc_gauss(0.4913, 1.0234, 0.95, sigma), trunc_gauss(-0.2969, -0.0541, -0.1, sigma), trunc_gauss(-0.2266, -0.0202, -0.05, sigma)],
# [trunc_gauss(-0.613, -0.2887, -0.35, sigma), trunc_gauss(1.0725, 1.6328, 1.5, sigma), trunc_gauss(-0.0469, 0.2906, 0.22, sigma)],
# [trunc_gauss(-0.1564, -0.0627, -0.09, sigma), trunc_gauss(0.1427, 0.2188, 0.2, sigma), trunc_gauss(0.5181, 0.7183, 0.65, sigma)]])
#
##num_ccms = len(xyz2cams)
##xyz2cams = torch.FloatTensor(xyz2cams)
##weights = torch.FloatTensor(num_ccms, 1, 1).uniform_(1e-8, 1e8)
##weights_sum = torch.sum(weights, dim=0)
##xyz2cam = torch.sum(xyz2cams * weights, dim=0) / weights_sum
## Multiplies with RGB -> XYZ to get RGB -> Camera CCM.
#rgb2xyz = torch.FloatTensor([[0.4124564, 0.3575761, 0.1804375],
# [0.2126729, 0.7151522, 0.0721750],
# [0.0193339, 0.1191920, 0.9503041]])
#rgb2cam = torch.mm(xyz2cam, rgb2xyz)
## Normalizes each row.
#rgb2cam = rgb2cam / torch.sum(rgb2cam, dim=-1, keepdim=True)
rgb2cam = torch.tensor([[0.6218, 0.2241, 0.1541], [0.1064, 0.6482, 0.2454], [0.084, 0.2383, 0.6777]]).cuda()
return rgb2cam
def random_gains(n, red_gain, blue_gain):
"""Generates random gains for brightening and white balance."""
# RGB gain represents brightening.
#n = tdist.Normal(loc=torch.tensor([0.8]), scale=torch.tensor([0.1]))
#rgb_gain = 1.0 / n.sample()
# RGB gain represents brightening.
n = torch.tensor([trunc_gauss(0.5, 1.1, 0.6, sigma)])
# Red and blue gains represent white balance.
red_gain = torch.tensor([trunc_gauss(1.9, 2.4, 1.98, sigma)])
blue_gain = torch.tensor([trunc_gauss(1.5, 1.9, 1.55, sigma)])
rgb_gain = 1.0 / n
return rgb_gain, red_gain, blue_gain
def inverse_smoothstep(image):
"""Approximately inverts a global tone mapping curve."""
image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
image = torch.clamp(image, min=0.0, max=1.0)
out = 0.5 - torch.sin(torch.asin(1.0 - 2.0 * image) / 3.0)
out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
return out
def gamma_expansion(image):
"""Converts from gamma to linear space."""
# Clamps to prevent numerical instability of gradients near zero.
image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
out = torch.clamp(image, min=1e-8) ** 2.2
out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
return out
def apply_ccm(image, ccm):
"""Applies a color correction matrix."""
image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
shape = image.size()
image = torch.reshape(image, [-1, 3])
image = torch.tensordot(image, ccm, dims=[[-1], [-1]])
out = torch.reshape(image, shape)
out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
return out
def safe_invert_gains(image, rgb_gain, red_gain, blue_gain):
"""Inverts gains while safely handling saturated pixels."""
image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
gains = torch.stack((1.0 / red_gain, torch.tensor([1.0]), 1.0 / blue_gain)) / rgb_gain
gains = gains.squeeze()
gains = gains[None, None, :]
gains = gains.cuda()
# Prevents dimming of saturated pixels by smoothly masking gains near white.
gray = torch.mean(image, dim=-1, keepdim=True)
#inflection = 0.9
inflection = 0.9999999999 # I remove the part which causes discontinuities
mask = (torch.clamp(gray - inflection, min=0.0) / (1.0 - inflection)) ** 2.0
mask = mask.cuda()
#Saturation appears when gains greater than 1
safe_gains = torch.max(mask + (1.0 - mask) * gains, gains)
out = image * safe_gains
out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
return out
def mosaic(image):
image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
shape = image.size()
chan0 = image[0::2, 0::2, 1]
chan1 = image[0::2, 1::2, 2]
chan2 = image[1::2, 0::2, 0]
chan3 = image[1::2, 1::2, 1]
out = torch.stack((chan0, chan1, chan2, chan3), dim=-1).cuda()
out = torch.reshape(out, (shape[0] // 2, shape[1] // 2, 4))
out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
return out
def unprocess(stack):
"""Unprocesses an image from sRGB to realistic raw data.
stack is a stack of shape 3x5, H, W"""
# Randomly creates image metadata.
rgb2cam = random_ccm()
cam2rgb = torch.inverse(rgb2cam)
rgb_gain, red_gain, blue_gain = random_gains()
_, H, W = stack.shape
result = torch.zeros(20, H//2, W//2)
for n in range(5):
# Approximately inverts global tone mapping.
image = inverse_smoothstep(stack[3*n:3*(n+1),:,:])
# Inverts gamma compression.
image = gamma_expansion(image)
# Inverts color correction.
image = apply_ccm(image, rgb2cam)
# Approximately inverts white balance and brightening.
image = safe_invert_gains(image, rgb_gain, red_gain, blue_gain)
# Clips saturated pixels.
image = torch.clamp(image, min=0.0, max=1.0)
# Applies a Bayer mosaic.
image = mosaic(image)
result[4*n:4*(n+1),:,:] = image.clone()
return result
def rgb2raw(rgb_batch):
B, C, H, W = rgb_batch.shape
raw_batch = torch.zeros(B, 20, H//2, W//2)
for b in range(B):
raw_batch[b,:,:,:] = unprocess(rgb_batch[b,:,:,:])
return raw_batch
def single_image_rgb2raw(img, rgb_gain, red_gain, blue_gain):
# Randomly creates image metadata.
rgb2cam = torch.tensor([[0.6218, 0.2241, 0.1541], [0.1064, 0.6482, 0.2454], [0.084, 0.2383, 0.6777]]).cuda()
img = img.transpose(2,0,1) / 255
img = torch.tensor(img).cuda()
# Approximately inverts global tone mapping.
image = inverse_smoothstep(img)
# Inverts gamma compression.
image = gamma_expansion(image)
# Inverts color correction.
image = apply_ccm(image, rgb2cam)
# Approximately inverts white balance and brightening.
image = safe_invert_gains(image, rgb_gain, red_gain, blue_gain)
# Clips saturated pixels.
image = torch.clamp(image, min=0.0, max=1.0)
# Applies a Bayer mosaic.
image = mosaic(image)
return image.permute(1,2,0).cpu().numpy()
def add_Poisson_Gaussian_noise(img):
a = 13.486051 #sigma shot noise iso 6400
b = 130.818508 #sigma read noise iso 6400
img = torch.tensor(img).permute(2,0,1).unsqueeze(0).cuda()
_, _, H, W = img.shape
poisson_noisy_img = torch.poisson((img-240)/a)*a
gaussian_noise = np.sqrt(b)*torch.randn(H, W)
gaussian_noise = gaussian_noise.cuda()
img = torch.clamp(240 + poisson_noisy_img + gaussian_noise, 0, 4095)
img = img.squeeze().permute(1,2,0).cpu().numpy()
return img
## Script
sigma = 0.1
for seq in range(240):
n = torch.FloatTensor([trunc_gauss(0, 1.0, 0.8, 0.1)]) #truncated Gaussian to prevent from saturation
## Red and blue gains represent white balance.
red_gain = torch.FloatTensor(1).uniform_(1.90, 2.4)
blue_gain = torch.FloatTensor(1).uniform_(1.5, 1.9)
rgb_gain = 1.0 / n
print(seq)
for i in range(args.first, args.last, args.step):
img = iio.read(args.input%(seq, i))
unprocess_img = single_image_rgb2raw(img, rgb_gain, red_gain, blue_gain)
unprocess_img = unprocess_img* (args.WL-args.BL) + args.BL
unprocess_img = np.clip(unprocess_img, 0,2634) #first pass: clipping to the 99-percentile
unprocess_img = (4075-268)*(unprocess_img-248.5) / (2628-248.5) + 268 #second pass: affine mapping to CRVD
iio.write(args.output%(seq, i), unprocess_img)
#for seq in range(30):
# n = torch.FloatTensor([trunc_gauss(0, 1.0, 0.8, 0.1)]) #truncated Gaussian to prevent from saturation
# ## Red and blue gains represent white balance.
# red_gain = torch.FloatTensor(1).uniform_(1.90, 2.4)
# blue_gain = torch.FloatTensor(1).uniform_(1.5, 1.9)
# rgb_gain = 1.0 / n
#
# print(seq)
#
# for i in range(args.first, args.last, args.step):
#
# img = iio.read(args.input%(seq, i))
# unprocess_img = single_image_rgb2raw(img, rgb_gain, red_gain, blue_gain)
# unprocess_img = unprocess_img* (args.WL-args.BL) + args.BL
# unprocess_img = np.clip(unprocess_img, 0,2634) #first pass: clipping to the 99-percentile
# unprocess_img = (4075-268)*(unprocess_img-248.5) / (2628-248.5) + 268 #second pass: affine mapping to CRVD
#
# iio.write(args.output%(seq, i), unprocess_img)