forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_kafka.py
68 lines (58 loc) · 2.41 KB
/
read_kafka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START dataflow_kafka_read]
import argparse
import apache_beam as beam
from apache_beam import window
from apache_beam.io.textio import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
def read_from_kafka() -> None:
# Parse the pipeline options passed into the application. Example:
# --topic=$KAFKA_TOPIC --bootstrap_server=$BOOTSTRAP_SERVER
# --output=$CLOUD_STORAGE_BUCKET --streaming
# For more information, see
# https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
class MyOptions(PipelineOptions):
@staticmethod
def _add_argparse_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--topic")
parser.add_argument("--bootstrap_server")
parser.add_argument("--output")
options = MyOptions()
with beam.Pipeline(options=options) as pipeline:
(
pipeline
# Read messages from an Apache Kafka topic.
| beam.managed.Read(
beam.managed.KAFKA,
config={
"bootstrap_servers": options.bootstrap_server,
"topic": options.topic,
"data_format": "RAW",
"auto_offset_reset_config": "earliest",
# The max_read_time_seconds parameter is intended for testing.
# Avoid using this parameter in production.
"max_read_time_seconds": 5
}
)
# Subdivide the output into fixed 5-second windows.
| beam.WindowInto(window.FixedWindows(5))
| WriteToText(
file_path_prefix=options.output, file_name_suffix=".txt", num_shards=1
)
)
# [END dataflow_kafka_read]
if __name__ == "__main__":
read_from_kafka()