-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp12.py
48 lines (36 loc) · 1.66 KB
/
app12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask import Flask, render_template, request
from keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
from io import BytesIO
app = Flask(__name__)
model = load_model('/Users/vineeth/Desktop/pythonProject/astro_data_model.h5')
img_path = 'static/uploads/img.jpg'
# Define your features list with corresponding labels
features = ['Disk,Face-on,No Spiral', 'Smooth, Completely round', 'Smooth,in-between round', 'Smooth,Cigar shaped',
'Disk,Edge-on,Rounded Bulge', 'Disk,Edge-on,Boxy Bulge', 'Disk,Edge-on,No Bulge',
'Disk,Face-on,Tight Spiral', 'Disk,Face-on,Medium Spiral',
'Disk,Face_on,Loose Sprial'] # Update with your actual labels
@app.route('/')
def index():
return render_template("index.html")
@app.route("/prediction", methods=["POST"])
def prediction():
img_data = request.files['img'].read()
img = Image.open(BytesIO(img_data))
img_array = image.img_to_array(img.resize((69, 69)))
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0 # Normalize
new_prediction = model.predict(img_array)
predicted_class = np.argmax(new_prediction)
# Map the predicted class to the corresponding label
predicted_label = features[predicted_class]
# Optionally, you can save the image if needed:
img.save(img_path)
return render_template("detector.html",data1=predicted_class,data2=predicted_label,data3=img_path)
@app.route('/about')
def about():
return render_template("howitworks.html")
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0')