diff --git a/.github/workflows/testing.yaml b/.github/workflows/testing.yaml index 686d0dc..9851650 100644 --- a/.github/workflows/testing.yaml +++ b/.github/workflows/testing.yaml @@ -27,7 +27,7 @@ jobs: flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - codespell --ignore-words-list="nd" --skip="*.css,*.js,*.svg" + codespell --ignore-words-list="nd" --skip="*.css,*.js,*.svg,*ipynb" - name: Test with pytest run: | pytest diff --git a/examples/jupyter/ransomware_report_usecases1.ipynb b/examples/jupyter/ransomware_report_usecases1.ipynb new file mode 100644 index 0000000..b1fe9a0 --- /dev/null +++ b/examples/jupyter/ransomware_report_usecases1.ipynb @@ -0,0 +1,765 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "mncPcdFCmU-7" + }, + "source": [ + "# Jupyter Notebook - Ransomware report use cases 1\n", + "\n", + "Copyright © 2021 Google\n", + "\n", + "Welcome to our Ransomware in a Global Context Jupyter notebook!\n", + "\n", + "You can find this and other very interesting posts in our [blog](https://blog.virustotal.com/)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "fQ8iCKRpo_mu" + }, + "outputs": [], + "source": [ + "#@markdown Please, insert your VT API Key*:\n", + "\n", + "API_KEY = '' #@param {type: \"string\"}\n", + "\n", + "#@markdown **The API key should have Premium permissions, otherwise some of the use cases might not provide the expected results.*\n", + "\n", + "#@markdown \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "62mNyWJ-0_J_" + }, + "source": [ + "\n", + "\n", + "---\n", + "---\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yZYLFG3kAB_a" + }, + "outputs": [], + "source": [ + "!pip install vt-py nest_asyncio" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qqOSPhLwsRLT" + }, + "source": [ + "# Use Case: Distribution vectors extraction\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tioTJg2cGu4v" + }, + "source": [ + "\n", + "Given a couple of searches like these ones:\n", + "\n", + " engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) tag:exploit (have:compressed_parents OR have:execution_parents OR have:pcap_parents OR have:email_parents)\n", + " engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) have:in_the_wild\n", + "\n", + "You can easily extract the distribution vectors of those matches thanks to the different relationships related to those observables. More concretely, we are going to focus on these relationships:\n", + "\n", + "* [itw_ips](https://developers.virustotal.com/reference#itw_ips)\n", + "* [itw_urls](https://developers.virustotal.com/reference#files-itw_urls)\n", + "* [itw_domains](https://developers.virustotal.com/reference#files-itw_domains)\n", + "* [compressed_parents](https://developers.virustotal.com/reference#files-compressed_parents)\n", + "* [execution_parents](https://developers.virustotal.com/reference#files-execution_parents)\n", + "* [pcap_parents](https://developers.virustotal.com/reference#files-pcap_parents)\n", + "* [email_parents](https://developers.virustotal.com/reference#files-email_parents)\n", + "\n", + "Please note that as the search is looking for old files, the **retrospection's limitation** that you might have can affect to the number of results that this report provides.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b2EfBIOAGULg" + }, + "source": [ + "## Workflow:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4zz5GQlCGFvU" + }, + "source": [ + "![distribution_vector_flow.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JTFRE4n6G8BJ" + }, + "source": [ + "## Script:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "65bz9z8Tvbka" + }, + "outputs": [], + "source": [ + "import base64\n", + "import hashlib\n", + "import json\n", + "import requests\n", + "\n", + "QUERIES = [\n", + " \"engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) tag:exploit (have:compressed_parents OR have:execution_parents OR have:pcap_parents OR have:email_parents)\",\n", + " \"engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) have:in_the_wild\"\n", + "]\n", + "RELATIONSHIPS = [\"itw_ips\", \"itw_urls\", \"itw_domains\", \"compressed_parents\", \"execution_parents\", \"pcap_parents\", \"email_parents\"]\n", + "separator = \",\"\n", + "RELATIONSHIPS_URL = separator.join(RELATIONSHIPS)\n", + "detected_domains = {}\n", + "detected_ips = {}\n", + "detected_urls = {}\n", + "detected_files = {}\n", + "analyzed_objects = []\n", + "\n", + "\n", + "def get_search_results(query, vt_client):\n", + " \"\"\"Execute the search and return the results.\"\"\"\n", + " url = \"/intelligence/search\"\n", + " results = vt_client.iterator(url, params={\"query\": query, \"relationships\": RELATIONSHIPS_URL})\n", + " \n", + " return results\n", + "\n", + "\n", + "def analyse_observable(observable, observable_type, vt_client):\n", + " if observable not in analyzed_objects:\n", + " observable_report = get_observable_report(observable,observable_type, vt_client)\n", + " if observable_report:\n", + " extract_iocs(observable, observable_type, vt_client, observable_report)\n", + " else:\n", + " extract_iocs(observable, observable_type, vt_client)\n", + "\n", + "\n", + "def get_observable_report(observable, observable_type, vt_client):\n", + " \"\"\"Get the observable's intelligence report from VirusTotal.\"\"\"\n", + "\n", + " endpoint = {\"url\": \"urls\", \"domain\": \"domains\", \"ip_address\": \"ip_addresses\", \"file\": \"files\"}\n", + " if observable_type == \"url\":\n", + " observable = base64.urlsafe_b64encode(observable.encode()).decode().strip(\"=\") \n", + " endpoint = endpoint[observable_type]\n", + " if observable_type == \"file\":\n", + " results = vt_client.get_object(f\"/{endpoint}/{observable}?relationships={RELATIONSHIPS_URL}\")\n", + " else:\n", + " results = vt_client.get_object(f\"/{endpoint}/{observable}?relationships=votes\")\n", + " return results\n", + "\n", + "\n", + "\n", + "def add_observable(iocs_dict, observable, positives=False):\n", + " \"\"\"Check if the observable was already seen before adding it into the final report.\"\"\"\n", + "\n", + " if observable not in iocs_dict:\n", + " iocs_dict[observable] = {}\n", + " iocs_dict[observable][\"positives\"] = positives\n", + " iocs_dict[observable][\"relatives\"] = 1\n", + " else:\n", + " iocs_dict[observable][\"relatives\"] += 1\n", + "\n", + " if observable not in analyzed_objects:\n", + " analyzed_objects.append(observable)\n", + " return iocs_dict\n", + "\n", + "\n", + "def extract_iocs(observable, observable_type, vt_client, observable_report=False):\n", + " \"\"\"Add the malicious relationships into the list of detected ovservables.\"\"\"\n", + "\n", + " global detected_ips\n", + " global detected_urls\n", + " global detected_domains\n", + " global detected_files\n", + "\n", + " if observable_report:\n", + " positives = observable_report.last_analysis_stats[\"malicious\"]\n", + " else:\n", + " try:\n", + " positives = detected_files[observable][\"positives\"]\n", + " except:\n", + " positives = False\n", + " if observable_type == \"ip_address\":\n", + " detected_ips = add_observable(detected_ips, observable, positives)\n", + " elif observable_type == \"url\":\n", + " detected_urls = add_observable(detected_urls, observable, positives)\n", + " elif observable_type == \"domain\":\n", + " detected_domains = add_observable(detected_domains, observable, positives)\n", + " else:\n", + " detected_files = add_observable(detected_files, observable, positives)\n", + " if detected_files[observable][\"relatives\"] == 1:\n", + " search_and_hunt(vt_client, observable_report)\n", + " return\n", + "\n", + "\n", + "def search_and_hunt(vt_client, observable_report=False):\n", + " \"\"\"Iterate over the queries and get matches.\n", + "\n", + " Then, analyze the relationships of those matches.\n", + " \"\"\"\n", + "\n", + " if observable_report:\n", + " results = observable_report\n", + " for relationship in RELATIONSHIPS:\n", + " if results.relationships[relationship][\"data\"]:\n", + " for hit in results.relationships[relationship][\"data\"]:\n", + " observable_type = hit[\"type\"]\n", + " observable = hit[\"id\"]\n", + " if observable_type == \"url\":\n", + " observable = hit[\"context_attributes\"][\"url\"]\n", + " analyse_observable(observable, observable_type, vt_client)\n", + "\n", + "\n", + " else:\n", + " for query in QUERIES:\n", + " results = get_search_results(query, vt_client)\n", + " for result in results:\n", + " match = result.id\n", + " for relationship in RELATIONSHIPS:\n", + " if result.relationships[relationship][\"data\"]:\n", + " for hit in result.relationships[relationship][\"data\"]:\n", + " observable_type = hit[\"type\"]\n", + " observable = hit[\"id\"]\n", + " if observable_type == \"url\":\n", + " observable = hit[\"context_attributes\"][\"url\"]\n", + " analyse_observable(observable, observable_type, vt_client) \n", + "\n", + "\n", + "def print_report():\n", + " \"\"\"Iterate over the detected observables and print the results.\"\"\"\n", + "\n", + " def print_header():\n", + " row = [\"Positives\",\"Relatives\",\"VT Link\",\"Observable\"]\n", + " print(\"{: ^15} {: <15} {: ^20} {: >100}\".format(*row))\n", + " print(\"_\"*200)\n", + "\n", + " def print_dict(d,type):\n", + " d2 = {}\n", + " for item in d:\n", + " d2[item] = d[item][\"relatives\"]\n", + "\n", + " top_view = [ (v,k) for k,v in d2.items() ]\n", + " top_view.sort(reverse=True)\n", + "\n", + " for items in top_view:\n", + " observable = items[1]\n", + " if type == \"url\":\n", + " encoded_url = hashlib.sha256(items[1].encode()).hexdigest()\n", + " row = [d[observable][\"positives\"],d[observable][\"relatives\"],\"https://www.virustotal.com/gui/\" + type + \"/\"+encoded_url,observable]\n", + " else:\n", + " row = [d[observable][\"positives\"],d[observable][\"relatives\"],\"https://www.virustotal.com/gui/\" + type + \"/\"+observable,observable]\n", + " print(\"{: ^10} {:^17} {: <110} {: <70}\".format(*row))\n", + "\n", + " print(\"\\n\\tDISTRIBUTION VECTORS REPORT\\n\")\n", + "\n", + " print(\"\\n#1: FILES\\n\")\n", + " print_header()\n", + " print_dict(detected_files, \"file\")\n", + "\n", + " print(\"\\n##2: DOMAINS\\n\")\n", + " print_header()\n", + " print_dict(detected_domains, \"domain\")\n", + "\n", + " print(\"\\n#3: URLS\\n\")\n", + " print_header()\n", + " print_dict(detected_urls, \"url\")\n", + "\n", + " print(\"\\n#4: IP ADDRESSES\\n\")\n", + " print_header()\n", + " print_dict(detected_ips, \"ip-address\")\n", + "\n", + " print(\"\\n\")\n", + "\n", + "\n", + "def main():\n", + " vt_client = vt.Client(API_KEY)\n", + " search_and_hunt(vt_client)\n", + " print_report()\n", + "\n", + "main()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MMHJja5CpXiU" + }, + "source": [ + "# Use Case: Ports and IP extraction\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O3LCTVZGO6ot" + }, + "source": [ + "In this use case we are going to focus on the lateral movements prevention. \n", + "\n", + "In order to this we will make use of the behavioural network reports." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7D8S__2oQJUV" + }, + "source": [ + "![IP_Traffic.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UQCjoXlfO-D0" + }, + "source": [ + "## Script:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3ZS5-7SZOqgr" + }, + "outputs": [], + "source": [ + "import nest_asyncio\n", + "nest_asyncio.apply()\n", + "import base64\n", + "import requests\n", + "import vt\n", + "\n", + "QUERIES = [\n", + " \"engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) tag:exploit have:behaviour_network\"\n", + "]\n", + "RELATIONSHIPS = [\"behaviours\"]\n", + "separator = \",\"\n", + "RELATIONSHIPS_URL = separator.join(RELATIONSHIPS)\n", + "extractions = {}\n", + "verdicts = {}\n", + "analyzed_objects = []\n", + "\n", + "\n", + "def get_search_results(query, vt_client):\n", + " \"\"\"Execute the search and return the results.\"\"\"\n", + " url = \"/intelligence/search\"\n", + " results = vt_client.iterator(url, params={\"query\": query, \"relationships\": RELATIONSHIPS_URL})\n", + " \n", + " return results\n", + "\n", + "def analyse_observable(observable, observable_type, vt_client):\n", + " if observable not in analyzed_objects:\n", + " analyzed_objects.append(observable)\n", + " observable_report = get_observable_report(observable, observable_type, vt_client)\n", + " if observable_report:\n", + " extract_iocs(observable, observable_report, vt_client)\n", + "\n", + "\n", + "def get_observable_report(observable, observable_type, vt_client):\n", + " \"\"\"Get the observable's intelligence report from VirusTotal.\"\"\"\n", + "\n", + " endpoint = {\"file_behaviour\": \"file_behaviours\", \"ip_address\": \"ip_addresses\"}\n", + " endpoint = endpoint[observable_type]\n", + " results = vt_client.get_object(f\"/{endpoint}/{observable}\")\n", + " return results\n", + "\n", + "\n", + "def extract_iocs(observable, observable_report, vt_client):\n", + " \"\"\"Add the malicious relationships into the list of detected ovservables.\"\"\"\n", + "\n", + " global extractions\n", + " global verdicts\n", + "\n", + " if hasattr(observable_report, \"ip_traffic\"):\n", + " comms = observable_report.ip_traffic\n", + "\n", + " for comm in comms:\n", + " try:\n", + " protocol = comm[\"transport_layer_protocol\"]\n", + " except:\n", + " protocol = \"Unknown\"\n", + " ip = comm[\"destination_ip\"]\n", + " port = comm[\"destination_port\"]\n", + " hash = observable[:64]\n", + "\n", + " if hash not in extractions:\n", + " extractions[hash] = {\"ports\":[], \"ips\":[], \"protocols\":[]}\n", + " if port not in extractions[hash][\"ports\"]:\n", + " extractions[hash][\"ports\"].append(port)\n", + " verdicts[port] = \"N/A\"\n", + " if ip not in extractions[hash][\"ips\"]:\n", + " extractions[hash][\"ips\"].append(ip)\n", + " if \"DNS\" in ip:\n", + " positives = \"N/A\"\n", + " else:\n", + " observable_report = get_observable_report(ip, \"ip_address\", vt_client)\n", + " positives = observable_report.last_analysis_stats[\"malicious\"]\n", + " verdicts[ip] = positives\n", + " if protocol not in extractions[hash][\"protocols\"]:\n", + " extractions[hash][\"protocols\"].append(protocol)\n", + " verdicts[protocol] = \"N/A\"\n", + "\n", + " return\n", + "\n", + "\n", + "def search_and_hunt(vt_client):\n", + " for query in QUERIES: \n", + " results = get_search_results(query, vt_client)\n", + " for result in results:\n", + " match = result.id\n", + " for relationship in RELATIONSHIPS:\n", + " if result.relationships[relationship][\"data\"]:\n", + " for hit in result.relationships[relationship][\"data\"]:\n", + " observable_type = hit[\"type\"]\n", + " observable = hit[\"id\"]\n", + " analyse_observable(observable, observable_type, vt_client)\n", + "\n", + "\n", + "def print_report():\n", + " elements = [\"ports\", \"ips\", \"protocols\"]\n", + " for e in elements:\n", + " get_top_list(e)\n", + "\n", + "\n", + "def get_top_list(element):\n", + " e_list = []\n", + " for hash in extractions:\n", + " e_list = list(set(e_list) | set(extractions[hash][element]))\n", + "\n", + " e_top = {}\n", + " for hash in extractions:\n", + " for e in e_list:\n", + " if e not in e_top:\n", + " e_top[e] = 0\n", + " if e in extractions[hash][element]:\n", + " e_top[e] += 1\n", + "\n", + " print(\"\\nTOP \" + element + \"\\n\" + \"_\"*100 + \"\\n\")\n", + " top_view = [ (v,k) for k,v in e_top.items() ]\n", + " top_view.sort(reverse=True)\n", + " for matches,observable in top_view:\n", + " row = [str(verdicts[observable]), observable, \"Number of matches: \", matches]\n", + " print(\"\\tPositives: {: >8} {: ^20} {: >20} {: >3}\".format(*row))\n", + "\n", + "\n", + "def main():\n", + " vt_client = vt.Client(API_KEY)\n", + " search_and_hunt(vt_client)\n", + " print_report()\n", + "\n", + "main()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IZwKMdcipRrq" + }, + "source": [ + "# Use Case: Geographical Distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IGexVXLUUJ77" + }, + "source": [ + "In this use case we will iterate over all the matches of our initial search:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "HB38UKRKr64G" + }, + "outputs": [], + "source": [ + "#@markdown\n", + "\n", + "VTI_SEARCH = 'engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) tag:exploit' #@param {type: \"string\"}\n", + "\n", + "#@markdown " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fE9GTrt-r_hM" + }, + "source": [ + "The difference now is that we will take a look to the Submissions tab in order to indentify how this malware has been spread around the world." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U5Q5HcuJULBa" + }, + "source": [ + "![Submissions.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wyls5rGZUNk7" + }, + "source": [ + "## Script:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XocPGaF-URFT" + }, + "outputs": [], + "source": [ + "import nest_asyncio\n", + "nest_asyncio.apply()\n", + "import json\n", + "import requests\n", + "import vt\n", + "\n", + "QUERIES = [\n", + " VTI_SEARCH\n", + "]\n", + "RELATIONSHIPS = [\"submissions\"]\n", + "separator = \",\"\n", + "RELATIONSHIPS_URL = separator.join(RELATIONSHIPS)\n", + "countries = {}\n", + "cities = {}\n", + "\n", + "\n", + "def get_submission(id, vt_client):\n", + " results = vt_client.get_object(f\"/submissions/{id}\")\n", + " interface = results.interface\n", + " if interface == \"email\":\n", + " return False, False, interface\n", + " country = results.country\n", + " if country == \"ZZ\":\n", + " city = country\n", + " else:\n", + " city = results.city\n", + " return country, city, interface\n", + "\n", + "def get_search_results(query, vt_client):\n", + " \"\"\"Execute the search and return the results.\"\"\"\n", + " url = \"/intelligence/search\"\n", + " results = vt_client.iterator(url, params={\"query\": query, \"relationships\": RELATIONSHIPS_URL})\n", + " \n", + " return results\n", + "\n", + "\n", + "\n", + "def print_report():\n", + " print(\"\\nTOP targeted countries\\n\" + \"_\"*100 + \"\\n\")\n", + "\n", + " countries_view = [ (v,k) for k,v in countries.items() ]\n", + " countries_view.sort(reverse=True)\n", + " for submission,country in countries_view:\n", + " row = [country,\"Number of submissions: \",submission]\n", + " print(\"{: >15} {: >25} {: >2}\".format(*row))\n", + "\n", + " print(\"\\nTOP targeted cities\\n\" + \"_\"*100 + \"\\n\")\n", + "\n", + " cities_view = [ (v,k) for k,v in cities.items() ]\n", + " cities_view.sort(reverse=True)\n", + " for submission,city in cities_view:\n", + " row = [city,\"Number of submissions: \",submission]\n", + " print(\"{: >35} {: >25} {: >2}\".format(*row))\n", + "\n", + "def search_and_hunt(vt_client):\n", + " global countries\n", + " global cities\n", + "\n", + " for query in QUERIES:\n", + " results = get_search_results(query, vt_client)\n", + " for result in results: \n", + " positives = result.last_analysis_stats[\"malicious\"]\n", + " for hit in result.relationships[\"submissions\"][\"data\"]:\n", + " submission_id = hit[\"id\"]\n", + " country,city,interface = get_submission(submission_id, vt_client)\n", + "\n", + " if interface != \"email\":\n", + " if country not in countries:\n", + " countries[country] = 0\n", + " countries[country] += 1\n", + " if city not in cities:\n", + " cities[city] = 0\n", + " cities[city] += 1\n", + "\n", + "\n", + "def main():\n", + " vt_client = vt.Client(API_KEY)\n", + " search_and_hunt(vt_client)\n", + " print_report()\n", + "\n", + "main()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mMOyXrZoOY1P" + }, + "source": [ + "# Use Case: TOP vulnerabilities" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9qd-rECmOh2J" + }, + "source": [ + "In this use case we are going to extract the top exploited vulnerabilities given an intelligence search like the one below:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "cellView": "form", + "id": "RgEuPEvln72E" + }, + "outputs": [], + "source": [ + "#@markdown\n", + "\n", + "VTI_SEARCH = 'engines:gandcrab fs:2020-02-01+ fs:2020-05-01- (type:peexe or type:pedll) tag:exploit' #@param {type: \"string\"}\n", + "\n", + "#@markdown " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OBivUmbkPF6j" + }, + "source": [ + "## Script:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2yunHaXDO2DS" + }, + "outputs": [], + "source": [ + "import nest_asyncio\n", + "nest_asyncio.apply()\n", + "import json\n", + "import requests\n", + "import vt\n", + "\n", + "QUERIES = [\n", + " VTI_SEARCH\n", + "]\n", + "cve_tags = {}\n", + "\n", + "\n", + "def get_search_results(query, vt_client):\n", + " \"\"\"Execute the search and return the results.\"\"\"\n", + " url = \"/intelligence/search\"\n", + " results = vt_client.iterator(url, params={\"query\": query})\n", + " \n", + " return results\n", + "\n", + "\n", + "def search_and_hunt(vt_client):\n", + " global cve_tags\n", + "\n", + " for query in QUERIES:\n", + " results = get_search_results(query, vt_client)\n", + " for result in results:\n", + " for tag in getattr(result, \"tags\", []):\n", + " if \"cve\" in tag:\n", + " if tag not in cve_tags:\n", + " cve_tags[tag] = 0\n", + " cve_tags[tag] += 1\n", + "\n", + "def print_report():\n", + " print(\"\\nTOP Vulnerabilities\" + \"\\n\" + \"_\"*100 + \"\\n\")\n", + " top_view = [ (v,k) for k,v in cve_tags.items() ]\n", + " top_view.sort(reverse=True)\n", + " for v,k in top_view:\n", + " row = [k,\"Number of matches: \",v]\n", + " print(\"{: >15} {: >25} {: >5}\".format(*row))\n", + "\n", + "def main():\n", + " vt_client = vt.Client(API_KEY)\n", + " search_and_hunt(vt_client)\n", + " print_report()\n", + "\n", + "main()" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Ransomware in a global context vt-py.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/examples/jupyter/ransomware_report_usecases2.ipynb b/examples/jupyter/ransomware_report_usecases2.ipynb new file mode 100644 index 0000000..3afa832 --- /dev/null +++ b/examples/jupyter/ransomware_report_usecases2.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2de615a6", + "metadata": {}, + "source": [ + "# Jupyter Notebook - Ransomware report use cases 2\n", + "\n", + "Copyright © 2021 Google" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "f2c002ed", + "metadata": {}, + "outputs": [], + "source": [ + "import vt\n", + "import nest_asyncio\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a0e8fb38", + "metadata": {}, + "outputs": [], + "source": [ + "#@markdown Please, insert your VT API Key*:\n", + "\n", + "API_KEY = '' #@param {type: \"string\"}\n", + "\n", + "#@markdown **The API key should have Premium permissions, otherwise some of the use cases might not provide the expected results.*\n", + "\n", + "#@markdown " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6a43b2f8", + "metadata": {}, + "outputs": [], + "source": [ + "nest_asyncio.apply()" + ] + }, + { + "cell_type": "markdown", + "id": "81e7e852", + "metadata": {}, + "source": [ + "# 1. Collecting hashes" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "dd8258f0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9426 hashes have been written to the file hashes.log\n", + "\n" + ] + } + ], + "source": [ + "nh = 0\n", + "with vt.Client(API_KEY) as client:\n", + " it = client.iterator('/intelligence/search',\n", + " params={'query': 'engines:ryuk fs:2021-01-01+ (type:peexe or type:pedll) p:10+'})\n", + " with open('hashes.log','w') as f:\n", + " for obj in it:\n", + " if obj.id:\n", + " f.write(f'{obj.id}\\n')\n", + " nh += 1\n", + " f.close()\n", + "print(f'{nh} hashes have been written to the file hashes.log\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "af491db1", + "metadata": {}, + "source": [ + "# 2. Malicious contacted IOCs" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "91f52171", + "metadata": {}, + "outputs": [], + "source": [ + "def get_malicious_IPs(file_hash):\n", + " contacted_IPs = set()\n", + " for ip in client.iterator('/files/{}/contacted_ips', file_hash, limit=20):\n", + " stats = ip.get('last_analysis_stats')\n", + " if stats and stats['malicious'] >= min_positives:\n", + " contacted_IPs.add(ip.id)\n", + " return contacted_IPs\n", + "\n", + "def get_malicious_Domains(file_hash):\n", + " contacted_domains = set()\n", + " for domain in client.iterator('/files/{}/contacted_domains', file_hash, limit=20):\n", + " stats = domain.get('last_analysis_stats')\n", + " if stats and stats['malicious'] >= min_positives:\n", + " contacted_domains.add(domain.id)\n", + " return contacted_domains" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "3fe5a2cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29 IOCs have been written to the file iocs.log\n", + "\n" + ] + } + ], + "source": [ + "malIOCs = set()\n", + "min_positives = 5 # Minimun number of positives for every IOC\n", + "nIOCs = 0\n", + "\n", + "with vt.Client(API_KEY) as client:\n", + " it = client.iterator('/intelligence/search',\n", + " params={'query': 'engines:babuk fs:2021-07-01+ (have:contacted_domains or have:contacted_ips)'})\n", + " for obj in it:\n", + " ips = get_malicious_IPs(obj.id)\n", + " domains = get_malicious_Domains(obj.id)\n", + " malIOCs = malIOCs | ips | domains\n", + "\n", + "with open('iocs.log','w') as f:\n", + " for ioc in malIOCs:\n", + " f.write(f'{ioc}\\n')\n", + " nIOCs += 1\n", + " \n", + "print(f'{nIOCs} IOCs have been written to the file iocs.log\\n') \n", + "f.close()" + ] + }, + { + "cell_type": "markdown", + "id": "75eb0fbb", + "metadata": {}, + "source": [ + "# 3. Searching for a text in domains and URLs" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a621ab7d", + "metadata": {}, + "outputs": [], + "source": [ + "def search_domains(file_hash, text):\n", + " domains = set()\n", + " for domain in client.iterator('/files/{}/embedded_domains', file_hash, limit=20):\n", + " if text in domain.id:\n", + " domains.add(domain.id)\n", + " for domain in client.iterator('/files/{}/itw_domains', file_hash, limit=20):\n", + " if text in domain.id:\n", + " domains.add(domain.id) \n", + " return domains\n", + "\n", + "def search_urls(file_hash, text):\n", + " urls = set()\n", + " for url in client.iterator('/files/{}/embedded_urls', file_hash, limit=20):\n", + " if text in url.id:\n", + " urls.add(url.id)\n", + " for url in client.iterator('/files/{}/itw_urls', file_hash, limit=20):\n", + " if text in url.id:\n", + " urls.add(url.id)\n", + " return urls" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "627139ad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "** Results found for file hash: 1a5f649438646bfe909ac1e08bfe37f969e21b7900933d51ad2fe0c5c549a79b (pedll)\n", + "\n", + " - www.google.fr\n", + "\n", + "** Results found for file hash: af48fb4200cff418d513fe0ca841a8adb8699b266266fcf46ef44e460361cff0 (peexe)\n", + "\n", + " - www.google-analytics.com\n", + "\n", + "** Results found for file hash: 062227eaca57abaf97dd2c6d5f198fdd0d11b15cfd45eef0f0f0217d5c70aa06 (android)\n", + "\n", + " - play.google.com\n", + "\n", + " - googleads.g.doubleclick.net\n", + "\n", + " - pagead2.googlesyndication.com\n", + "\n", + " - plus.google.com\n", + "\n", + " - www.google.com\n", + "\n", + " - support.google.com\n", + "\n", + "** Results found for file hash: 569a267a4282bc694a8b39502b4e51bd3b78d449e075f4480c51eba71433b5dd (peexe)\n", + "\n", + " - www.google.de\n", + "\n", + "** Results found for file hash: 87ceec489fbfc70c2d935dc0717dba6f7d7147d06be08c661e05f7c83c3b67f0 (android)\n", + "\n", + " - play.google.com\n", + "\n", + " - googleads.g.doubleclick.net\n", + "\n", + " - pagead2.googlesyndication.com\n", + "\n", + " - plus.google.com\n", + "\n", + " - www.google.com\n", + "\n", + " - support.google.com\n", + "\n", + "** Results found for file hash: d419b2e7a6e9252b1cb3b86a6f8f107206c31cc666a74af97738f46b650ed4c5 (peexe)\n", + "\n", + " - www.googleadservices.com\n", + "\n", + " - googleads.g.doubleclick.net\n", + "\n", + " - www.googletagmanager.com\n", + "\n", + "** Results found for file hash: bcd862cc4d790ff73de8f573b3719f2c857bf0d03efa311e1f9cbf5cfa05d9ed (peexe)\n", + "\n", + " - partner.googleadservices.com\n", + "\n", + "** Results found for file hash: 147e54a51effe8a0cb42691e0e967752698b4db5883532f88daed9ba4f8b69a7 (peexe)\n", + "\n", + " - ssl.google-analytics.com\n", + "\n", + "** Results found for file hash: ac8eac1c5644ea1563783e7bdccaddbfaa6146fdcd610a7acc852fe76420352a (peexe)\n", + "\n", + " - partner.googleadservices.com\n", + "\n" + ] + } + ], + "source": [ + "stxt=\"google\" # Write here any text you want to search for\n", + "query_string = 'engines:cerber fs:2021-06-01+ (embedded_domains: %s OR embedded_urls:%s OR itw: %s)' % (stxt, stxt, stxt)\n", + "\n", + "with vt.Client(API_KEY) as client:\n", + " it = client.iterator('/intelligence/search', params={'query': query_string})\n", + "\n", + " for obj in it:\n", + " results = search_domains(obj.id, search_text) | search_urls(obj.id, search_text)\n", + " \n", + " if results:\n", + " print(f'** Results found for file hash: {obj.id} (%s)\\n' %(obj.type_tag) )\n", + " for result in results:\n", + " print(f' - {result}\\n')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}