-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb.py
37 lines (28 loc) · 1.33 KB
/
web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
import tensorflow as tf
import numpy as np
def model_prediction(test_image):
model = tf.keras.models.load_model("train_potato_disease.keras")
image = tf.keras.preprocessing.image.load_img(test_image, target_size=(128,128))
input_arr = tf.keras.preprocessing.image.img_to_array(image)
input_arr = np.array([input_arr])
predictions = model.predict(input_arr)
return np.argmax(predictions)
st.sidebar.title("Plant Disease system for Sustainable Agriculture")
app_mode = st.sidebar.selectbox('Select page', ['Home', 'Disease Recognition'])
from PIL import Image
img = Image.open('Diseases.jpg')
st.image(img)
if app_mode == 'Home':
st.markdown("<h1 style='text-align: center;'>Plant Disease Detection System for Sustainable Agriculture</h1>", unsafe_allow_html=True)
elif app_mode == 'Disease Recognition':
st.header('Plant Disease Detection System For Sustainable Agriculture')
test_image = st.file_uploader('Choose an image:')
if st.button('Show Image'):
st.image(test_image, width=4, use_column_width=True)
if st.button('Predict'):
st.snow()
st.write('our prediction')
result_index = model_prediction(test_image)
class_name = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
st.success('Model is predicting its a {}'.format(class_name[result_index]))