@@ -48,27 +48,27 @@ We also provide a simple demo to quantize these models to specified bit-width wi
48
48
` python quantize.py --type cifar10 --quant_method linear --param_bits 8 --fwd_bits 8 --bn_bits 8 --ngpu 1 `
49
49
50
50
## Top1 Accuracy
51
- We evaluate the performance of popular dataset and models with linear quantized method. The bit-width of running mean and running variance in BN are 10 bits for all results.
51
+ We evaluate the performance of popular dataset and models with linear quantized method. The bit-width of running mean and running variance in BN are 10 bits for all results (except for 32-float (except for 32-float) .
52
52
53
53
54
54
| Model| 32-float | 12-bit | 10-bit | 8-bit | 6-bit |
55
55
| :----| :--------:| :------:| :-----:| :-----:| :-----:|
56
- | [ MNIST] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/mnist-b07bb66b.pth ) | 98.42% | 98.43% | 98.44% | 98.44% | 98.32|
57
- | [ SVHN] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/svhn-f564f3d8.pth ) | 96.03% | 96.03% | 96.04% | 96.02% | 95.46% |
58
- | [ CIFAR10] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar10-d875770b.pth ) | 93.78% | 93.79% | 93.80% | 93.58% | 90.86% |
59
- | [ CIFAR100] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar100-3a55a987.pth ) | 74.27% | 74.21% | 74.19% | 73.70% | 66.32% |
60
- | [ STL10] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/stl10-866321e9.pth ) | 77.59% | 77.65% | 77.70% | 77.59% | 73.40% |
61
- | [ AlexNet] ( https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth ) | 55.70% | 55.66% | 55.54% | 54.17% | 18.19% |
62
- | [ VGG16] ( https://download.pytorch.org/models/vgg16-397923af.pth ) | 70.44% | 70.45% | 70.44% | 69.99% | 53.33% |
63
- | [ VGG19] ( https://download.pytorch.org/models/vgg19-dcbb9e9d.pth ) | 71.36% | 71.35% | 71.34% | 70.88% | 56.00% |
64
- | [ ResNet18] ( https://download.pytorch.org/models/resnet18-5c106cde.pth ) | 68.63% | 68.62% | 68.49% | 66.80% | 19.14% |
65
- | [ ResNet34] ( https://download.pytorch.org/models/resnet34-333f7ec4.pth ) | 72.50% | 72.46% | 72.45% | 71.47% | 32.25% |
66
- | [ ResNet50] ( https://download.pytorch.org/models/resnet50-19c8e357.pth ) | 74.98% | 74.94% | 74.91% | 72.54% | 2.43% |
67
- | [ ResNet101] ( https://download.pytorch.org/models/resnet101-5d3b4d8f.pth ) | 76.69% | 76.66% | 76.22% | 65.69% | 1.41% |
68
- | [ ResNet152] ( https://download.pytorch.org/models/resnet152-b121ed2d.pth ) | 77.55% | 77.51% | 77.40% | 74.95% | 9.29% |
69
- | [ SqueezeNetV0] ( https://download.pytorch.org/models/squeezenet1_0-a815701f.pth ) | 56.73% | 56.75% | 56.70% | 53.93% | 14.21% |
70
- | [ SqueezeNetV1] ( https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth ) | 56.52% | 56.52% | 56.24% | 54.56% | 17.10% |
71
- | [ InceptionV3] ( https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth ) | 76.41% | 76.43% | 76.44% | 73.67% | 1.50% |
56
+ | [ MNIST] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/mnist-b07bb66b.pth ) | 98.42| 98.43| 98.44| 98.44| 98.32|
57
+ | [ SVHN] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/svhn-f564f3d8.pth ) | 96.03| 96.03| 96.04| 96.02| 95.46|
58
+ | [ CIFAR10] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar10-d875770b.pth ) | 93.78| 93.79| 93.80| 93.58| 90.86|
59
+ | [ CIFAR100] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/cifar100-3a55a987.pth ) | 74.27| 74.21| 74.19| 73.70| 66.32|
60
+ | [ STL10] ( http://ml.cs.tsinghua.edu.cn/~chenxi/pytorch-models/stl10-866321e9.pth ) | 77.59| 77.65| 77.70| 77.59| 73.40|
61
+ | [ AlexNet] ( https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth ) | 55.70/78.42 | 55.66/78.41 | 55.54/78.39 | 54.17/77.29 | 18.19/36.25 |
62
+ | [ VGG16] ( https://download.pytorch.org/models/vgg16-397923af.pth ) | 70.44/89.43 | 70.45/89.43 | 70.44/89.33 | 69.99/89.17 | 53.33/76.32 |
63
+ | [ VGG19] ( https://download.pytorch.org/models/vgg19-dcbb9e9d.pth ) | 71.36/89.94 | 71.35/89.93 | 71.34/89.88 | 70.88/89.62 | 56.00/78.62 |
64
+ | [ ResNet18] ( https://download.pytorch.org/models/resnet18-5c106cde.pth ) | 68.63/88.31 | 68.62/88.33 | 68.49/88.25 | 66.80/87.20 | 19.14/36.49 |
65
+ | [ ResNet34] ( https://download.pytorch.org/models/resnet34-333f7ec4.pth ) | 72.50/90.86 | 72.46/90.82 | 72.45/90.85 | 71.47/90.00 | 32.25/55.71 |
66
+ | [ ResNet50] ( https://download.pytorch.org/models/resnet50-19c8e357.pth ) | 74.98/92.17 | 74.94/92.12 | 74.91/92.09 | 72.54/90.44 | 2.43/5.36 |
67
+ | [ ResNet101] ( https://download.pytorch.org/models/resnet101-5d3b4d8f.pth ) | 76.69/93.30 | 76.66/93.25 | 76.22/92.90 | 65.69/79.54 | 1.41/1.18 |
68
+ | [ ResNet152] ( https://download.pytorch.org/models/resnet152-b121ed2d.pth ) | 77.55/93.59 | 77.51/93.62 | 77.40/93.54 | 74.95/92.46 | 9.29/16.75 |
69
+ | [ SqueezeNetV0] ( https://download.pytorch.org/models/squeezenet1_0-a815701f.pth ) | 56.73/79.39 | 56.75/79.40 | 56.70/79.27 | 53.93/77.04 | 14.21/29.74 |
70
+ | [ SqueezeNetV1] ( https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth ) | 56.52/79.13 | 56.52/79.15 | 56.24/79.03 | 54.56/77.33 | 17.10/32.46 |
71
+ | [ InceptionV3] ( https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth ) | 76.41/92.78 | 76.43/92.71 | 76.44/92.73 | 73.67/91.34 | 1.50/4.82 |
72
72
73
73
** Note: ImageNet 32-float models are directly from torchvision**
74
74
0 commit comments