-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneural.py
359 lines (350 loc) · 10.9 KB
/
neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import os, sys
from PIL import Image, ImageDraw
from random import randint
import string
# const
white = 255
black = 0
junkcolor = 100
ConstOutNum = 3
mode = 'L'
BaseFile="GeneratedSet.txt"
SetSize = 5000
alpha = 15
# cfg
side = 7
sz = (side,side)
HarassLevel = 1
# Each number describes number of neurons in a layer (yes, poor design decision, idc@r3)
Config = [5, 4, ConstOutNum]
#
def Blank():
empty = [[ 0 for _ in range(side)] for _ in range(side)]
return empty
def Msquare():
img = Image.new(mode, sz, color = 'white')
pixels = img.load()
instance = Blank()
border = side - 1
for i in range(1,border):
instance[1][i] = 1
instance[border - 1][i] = 1
instance[i][1] = 1
instance[i][border - 1] = 1
for i in range(img.size[0]):
for j in range(img.size[1]):
if instance[i][j]:
pixels[i,j] = black
return img
def Mcircle():
img = Image.new(mode, sz, color = 'white')
draw = ImageDraw.Draw(img)
draw.ellipse((1, 1, side - 2, side -2), fill = 'white', outline ='black')
return img
def Mtriangle():
img = Image.new(mode, sz, color = 'white')
pixels = img.load()
instance = Blank()
border = side - 1
cap = side // 2
i = 1
while i <= cap:
instance[i][border - i] = 1
instance[border - i][side - i - 1] = 1
i=i+1
for i in range(1,border):
instance[i][border - 1] = 1
for i in range(img.size[0]):
for j in range(img.size[1]):
if instance[i][j]:
pixels[i,j] = black
return img
def Randfigure():
figure = randint(0,2)
if (figure == 0):
img = Msquare()
elif (figure == 1):
img = Mcircle()
else:
img = Mtriangle()
return img
def MutateVector(Vector):
newVector = [ 0 for _ in range(len(Vector))]
# describe mutating rules here
for i in range(len(Vector)):
if Vector[i]:
newVector[i] = 1
return newVector
def Sygm(x):
return 1/(1+np.exp(-x))
def is_white(x):
if (x > 100):
return 1
else:
return 0
def is_black(x):
if (x < 100):
return 1
else:
return 0
def Harass(img,depth):
while depth:
pixels = img.load()
x = randint(0,side-1)
y = randint(0,side-1)
if is_black(pixels[x,y]):
pixels[x,y] = white
not_added = 1
while not_added:
i = randint(0,side-1)
j = randint(0,side-1)
if is_white(pixels[i, j]):
pixels[i, j] = black
not_added = 0
depth -= 1
return img
def GetVec(img):
bitmask = img.load()
Vector = Blank()
for i in range(img.size[0]):
for j in range(img.size[1]):
if is_black(bitmask[i,j]):
Vector[j][i] = 1
return sum(Vector, [])
def ToImg(Vector):
img = Image.new(mode, sz, color = 'white')
pixels = img.load()
for i in range(side*side):
if(Vector[i] == '1'):
pixels[ (i % side), (i // side)] = 1
return img
def ReadLn(fname, delete = 1 ):
f = open(fname, "r")
lines = f.readlines()
f.close()
string = lines[0]
del lines[0]
if delete:
f = open(fname, "w")
f.writelines(lines)
f.close()
return string
def ToVector(string):
Vector = [0 for _ in range(len(string) - 1)]
for i in range(len(string)):
if (string[i] == '1'):
Vector[i] = 1
return Vector
def ReadFromBase():
Vector = ToVector(ReadLn(BaseFile))
Figure = ToVector(ReadLn(BaseFile))
test_couple = (Vector, Figure)
return test_couple
def GenerateSet(harass, size = 100):
f = open(BaseFile, "w")
for i in range(size):
figure = randint(0,2)
Res = [0 for _ in range(ConstOutNum)]
if (figure == 0):
img = Msquare()
Res[0] = 1
elif (figure == 1):
img = Mcircle()
Res[1] = 1
else:
img = Mtriangle()
Res[2] = 1
Vector = GetVec(Harass(img, harass))
VectorStr = ''.join(str(e) for e in Vector)
ResStr = ''.join(str(e) for e in Res)
print(VectorStr, file = f)
print(ResStr, file = f)
f.close()
def CalculateErr(need, got):
TotalErr = 0
for i in range(len(need)):
TotalErr += need[i] - got[i]
return (TotalErr*0.5)
def RunSet(net):
net.ShowWeights()
for i in range(SetSize):
couple = ReadFromBase()
net.Eat(couple[0])
result = net.Run()
max_val = max(couple[1])
waited = 0
for i in range(len(couple[1])):
if (couple[1][i] == max_val):
waited = i
got = 0
max_val = max(result)
for i in range(len(result)):
if (result[i] == max_val):
got = i
if (waited == got):
#print("Recognized")
net.recognized +=1
else:
#print("Not Good: need %s, got %s" %(couple[1], result))
net.not_recognized +=1
MutateWeights(net, couple[1])
# TotalErr = CalculateErr(couple[1], result)
# if (abs(TotalErr) > 0.1):
# net.recognized +=1
# print("Total Error abs is eq %s" %abs(TotalErr))
# else:
# net.not_recognized +=1
# MutateWeights(net, couple[0])
net.ShowWeights()
net.ShowdWeights()
def MutateWeights(net, need):
for layer_num in range(len(net.Layers) - 1, -1, -1):
if (layer_num == len(net.Layers) - 1):
i = 0
for neuron in net.Layers[layer_num].Neurons:
_out = net.Vectors[layer_num + 1][i]
#print("out %s" % _out)
t = need[i]
neuron.Delta = (t - _out) * (1 - _out) * _out
_in = net.Vectors[layer_num]
#print("in %s" % _in)
for pr_nrn in range(len(net.Layers[layer_num - 1].Neurons)):
neuron.dWeights[pr_nrn] = alpha * neuron.Delta * _in[pr_nrn]
i+=1
else:
i = 0
for neuron in net.Layers[layer_num].Neurons:
delta_sum = 0
_out = net.Vectors[layer_num + 1][i]
#print("out %s" % _out)
for nxt_nrn in net.Layers[layer_num + 1].Neurons:
delta_sum += nxt_nrn.Delta * nxt_nrn.Weights[i]
neuron.Delta = delta_sum * (1 - _out) * _out
_in = net.Vectors[layer_num]
#print("in %s" % _in)
if (layer_num == 0):
_range = len(net.Vectors[0])
else:
_range = len(net.Layers[layer_num - 1].Neurons)
for pr_nrn in range(_range):
neuron.dWeights[pr_nrn] = alpha * neuron.Delta * _in[pr_nrn]
i+=1
net.Update()
#net.ShowVectors()
#net.ShowWeights()
#net.ShowdWeights()
class Network:
def __init__(self, config, setupvector):
self.recognized = 0
self.not_recognized = 0
self.InputVector = setupvector
self.Config = config
self.Layers = [0 for _ in range(len(self.Config))]
for i in range(0, len(self.Layers)):
if (i == 0):
self.Layers[i] = Layer(self.Config[i], len(self.InputVector))
else:
self.Layers[i] = Layer(self.Config[i], self.Config[i-1])
self.Vectors = [0 for _ in range(len(self.Config) + 1)]
for i in range(0, len(self.Vectors)):
if (i == 0):
self.Vectors[i] = self.InputVector
else:
self.Vectors[i] = [0 for _ in range(self.Config[i-1])]
def Run(self):
for i in range(len(self.Layers)):
self.Vectors[i + 1] = self.Layers[i].Run(self.Vectors[i])
return self.Vectors[i+1]
def ShowVectors(self, num = 'EMPTY'):
if (num == 'EMPTY'):
for i in range(len(self.Vectors)):
print(self.Vectors[i])
else:
self.Vectors[num].ShowWeights()
return self.Vectors
def ShowWeights(self, layer = 0):
if (layer == 0):
for i in range(len(self.Layers)):
self.Layers[i].ShowWeights()
else:
self.Layers[layer].ShowWeights()
def ShowdWeights(self, layer = 0):
if (layer == 0):
for i in range(len(self.Layers)):
self.Layers[i].ShowdWeights()
else:
self.Layers[layer].ShowdWeights()
def ShowDelta(self, layer = 0):
if (layer == 0):
for i in range(len(self.Layers)):
self.Layers[i].ShowDelta()
else:
self.Layers[layer].ShowWeights()
def Update(self):
for i in range(len(self.Layers)):
#print("layer %d update" %i)
self.Layers[i].Update()
def Eat(self, vector):
self.Vectors[0] = vector
class Layer(Network):
def __init__(self, neurons_num, vectorsize):
self.Neurons = [0 for _ in range(neurons_num)]
for i in range(len(self.Neurons)):
self.Neurons[i] = Neuron(vectorsize, Sygm)
def Run(self, vector):
Vector = [0 for _ in range(len(self.Neurons))]
for i in range(len(self.Neurons)):
Vector[i] = self.Neurons[i].Run(vector)
return Vector
def ShowWeights(self):
for i in range(len(self.Neurons)):
self.Neurons[i].ShowWeights()
def ShowdWeights(self):
for i in range(len(self.Neurons)):
self.Neurons[i].ShowdWeights()
def ShowDelta(self):
for i in range(len(self.Neurons)):
self.Neurons[i].ShowDelta()
def Update(self):
for i in range(len(self.Neurons)):
#print(">neuron %d update" %i)
self.Neurons[i].Update()
class Neuron(Layer):
def __init__(self, vector, func):
self.Func = func
self.Weights = [randint(-5,5)/10 for _ in range(vector)]
self.dWeights = [0.0 for _ in range(vector)]
self.Delta = 0.0
def Run(self, vector):
res = 0
for i in range(len(self.Weights)):
res += self.Weights[i] * vector[i]
return self.Func(res)
def ShowWeights(self):
print(self.Weights)
def ShowdWeights(self):
print(self.dWeights)
def Update(self):
for i in range(len(self.dWeights)):
#print(">>weight %d update" %i)
self.Weights[i] += self.dWeights[i]
def main():
if(side % 2 == 0):
print("bad side")
exit()
img = Randfigure()
Vector = MutateVector(GetVec(img))
img = Harass(img, HarassLevel)
img.save('img.png')
Vector = GetVec(img)
GenerateSet(HarassLevel, SetSize)
Net = Network(Config, Vector)
RunSet(Net)
#Net.ShowVectors()
#Net.ShowWeights()
#Net.ShowdWeights()
print("recognized = ", Net.recognized)
print("not_recognized = ", Net.not_recognized)
if __name__ == '__main__':
main()