forked from bitcoindevkit/bdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy.rs
1915 lines (1707 loc) · 75.2 KB
/
policy.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Bitcoin Dev Kit
// Written in 2020 by Alekos Filini <[email protected]>
//
// Copyright (c) 2020-2021 Bitcoin Dev Kit Developers
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Descriptor policy
//!
//! This module implements the logic to extract and represent the spending policies of a descriptor
//! in a more human-readable format.
//!
//! This is an **EXPERIMENTAL** feature, API and other major changes are expected.
//!
//! ## Example
//!
//! ```
//! # use std::sync::Arc;
//! # use bdk::descriptor::*;
//! # use bdk::wallet::signer::*;
//! # use bdk::bitcoin::secp256k1::Secp256k1;
//! use bdk::descriptor::policy::BuildSatisfaction;
//! let secp = Secp256k1::new();
//! let desc = "wsh(and_v(v:pk(cV3oCth6zxZ1UVsHLnGothsWNsaoxRhC6aeNi5VbSdFpwUkgkEci),or_d(pk(cVMTy7uebJgvFaSBwcgvwk8qn8xSLc97dKow4MBetjrrahZoimm2),older(12960))))";
//!
//! let (extended_desc, key_map) = ExtendedDescriptor::parse_descriptor(&secp, desc)?;
//! println!("{:?}", extended_desc);
//!
//! let signers = Arc::new(SignersContainer::build(key_map, &extended_desc, &secp));
//! let policy = extended_desc.extract_policy(&signers, BuildSatisfaction::None, &secp)?;
//! println!("policy: {}", serde_json::to_string(&policy)?);
//! # Ok::<(), bdk::Error>(())
//! ```
use std::cmp::max;
use std::collections::{BTreeMap, HashSet, VecDeque};
use std::fmt;
use serde::ser::SerializeMap;
use serde::{Serialize, Serializer};
use bitcoin::hashes::*;
use bitcoin::util::bip32::Fingerprint;
use bitcoin::{PublicKey, XOnlyPublicKey};
use miniscript::descriptor::{
DescriptorPublicKey, DescriptorSinglePub, ShInner, SinglePubKey, SortedMultiVec, WshInner,
};
use miniscript::{Descriptor, Miniscript, MiniscriptKey, Satisfier, ScriptContext, Terminal};
#[allow(unused_imports)]
use log::{debug, error, info, trace};
use crate::descriptor::ExtractPolicy;
use crate::keys::ExtScriptContext;
use crate::wallet::signer::{SignerId, SignersContainer};
use crate::wallet::utils::{self, After, Older, SecpCtx};
use super::checksum::get_checksum;
use super::error::Error;
use super::XKeyUtils;
use bitcoin::util::psbt::{Input as PsbtInput, PartiallySignedTransaction as Psbt};
use miniscript::psbt::PsbtInputSatisfier;
/// A unique identifier for a key
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize)]
#[serde(rename_all = "snake_case")]
pub enum PkOrF {
/// A legacy public key
Pubkey(PublicKey),
/// A x-only public key
XOnlyPubkey(XOnlyPublicKey),
/// An extended key fingerprint
Fingerprint(Fingerprint),
}
impl PkOrF {
fn from_key(k: &DescriptorPublicKey, secp: &SecpCtx) -> Self {
match k {
DescriptorPublicKey::SinglePub(DescriptorSinglePub {
key: SinglePubKey::FullKey(pk),
..
}) => PkOrF::Pubkey(*pk),
DescriptorPublicKey::SinglePub(DescriptorSinglePub {
key: SinglePubKey::XOnly(pk),
..
}) => PkOrF::XOnlyPubkey(*pk),
DescriptorPublicKey::XPub(xpub) => PkOrF::Fingerprint(xpub.root_fingerprint(secp)),
}
}
}
/// An item that needs to be satisfied
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
#[serde(tag = "type", rename_all = "UPPERCASE")]
pub enum SatisfiableItem {
// Leaves
/// ECDSA Signature for a raw public key
EcdsaSignature(PkOrF),
/// Schnorr Signature for a raw public key
SchnorrSignature(PkOrF),
/// SHA256 preimage hash
Sha256Preimage {
/// The digest value
hash: sha256::Hash,
},
/// Double SHA256 preimage hash
Hash256Preimage {
/// The digest value
hash: sha256d::Hash,
},
/// RIPEMD160 preimage hash
Ripemd160Preimage {
/// The digest value
hash: ripemd160::Hash,
},
/// SHA256 then RIPEMD160 preimage hash
Hash160Preimage {
/// The digest value
hash: hash160::Hash,
},
/// Absolute timeclock timestamp
AbsoluteTimelock {
/// The timestamp value
value: u32,
},
/// Relative timelock locktime
RelativeTimelock {
/// The locktime value
value: u32,
},
/// Multi-signature public keys with threshold count
Multisig {
/// The raw public key or extended key fingerprint
keys: Vec<PkOrF>,
/// The required threshold count
threshold: usize,
},
// Complex item
/// Threshold items with threshold count
Thresh {
/// The policy items
items: Vec<Policy>,
/// The required threshold count
threshold: usize,
},
}
impl SatisfiableItem {
/// Returns whether the [`SatisfiableItem`] is a leaf item
pub fn is_leaf(&self) -> bool {
!matches!(
self,
SatisfiableItem::Thresh {
items: _,
threshold: _,
}
)
}
/// Returns a unique id for the [`SatisfiableItem`]
pub fn id(&self) -> String {
get_checksum(&serde_json::to_string(self).expect("Failed to serialize a SatisfiableItem"))
.expect("Failed to compute a SatisfiableItem id")
}
}
fn combinations(vec: &[usize], size: usize) -> Vec<Vec<usize>> {
assert!(vec.len() >= size);
let mut answer = Vec::new();
let mut queue = VecDeque::new();
for (index, val) in vec.iter().enumerate() {
let mut new_vec = Vec::with_capacity(size);
new_vec.push(*val);
queue.push_back((index, new_vec));
}
while let Some((index, vals)) = queue.pop_front() {
if vals.len() >= size {
answer.push(vals);
} else {
for (new_index, val) in vec.iter().skip(index + 1).enumerate() {
let mut cloned = vals.clone();
cloned.push(*val);
queue.push_front((new_index, cloned));
}
}
}
answer
}
fn mix<T: Clone>(vec: Vec<Vec<T>>) -> Vec<Vec<T>> {
if vec.is_empty() || vec.iter().any(Vec::is_empty) {
return vec![];
}
let mut answer = Vec::new();
let size = vec.len();
let mut queue = VecDeque::new();
for i in &vec[0] {
let mut new_vec = Vec::with_capacity(size);
new_vec.push(i.clone());
queue.push_back(new_vec);
}
while let Some(vals) = queue.pop_front() {
if vals.len() >= size {
answer.push(vals);
} else {
let level = vals.len();
for i in &vec[level] {
let mut cloned = vals.clone();
cloned.push(i.clone());
queue.push_front(cloned);
}
}
}
answer
}
/// Type for a map of sets of [`Condition`] items keyed by each set's index
pub type ConditionMap = BTreeMap<usize, HashSet<Condition>>;
/// Type for a map of folded sets of [`Condition`] items keyed by a vector of the combined set's indexes
pub type FoldedConditionMap = BTreeMap<Vec<usize>, HashSet<Condition>>;
fn serialize_folded_cond_map<S>(
input_map: &FoldedConditionMap,
serializer: S,
) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut map = serializer.serialize_map(Some(input_map.len()))?;
for (k, v) in input_map {
let k_string = format!("{:?}", k);
map.serialize_entry(&k_string, v)?;
}
map.end()
}
/// Represent if and how much a policy item is satisfied by the wallet's descriptor
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
#[serde(tag = "type", rename_all = "UPPERCASE")]
pub enum Satisfaction {
/// Only a partial satisfaction of some kind of threshold policy
Partial {
/// Total number of items
n: usize,
/// Threshold
m: usize,
/// The items that can be satisfied by the descriptor or are satisfied in the PSBT
items: Vec<usize>,
#[serde(skip_serializing_if = "Option::is_none")]
/// Whether the items are sorted in lexicographic order (used by `sortedmulti`)
sorted: Option<bool>,
#[serde(skip_serializing_if = "BTreeMap::is_empty")]
/// Extra conditions that also need to be satisfied
conditions: ConditionMap,
},
/// Can reach the threshold of some kind of threshold policy
PartialComplete {
/// Total number of items
n: usize,
/// Threshold
m: usize,
/// The items that can be satisfied by the descriptor
items: Vec<usize>,
#[serde(skip_serializing_if = "Option::is_none")]
/// Whether the items are sorted in lexicographic order (used by `sortedmulti`)
sorted: Option<bool>,
#[serde(
serialize_with = "serialize_folded_cond_map",
skip_serializing_if = "BTreeMap::is_empty"
)]
/// Extra conditions that also need to be satisfied
conditions: FoldedConditionMap,
},
/// Can satisfy the policy item
Complete {
/// Extra conditions that also need to be satisfied
condition: Condition,
},
/// Cannot satisfy or contribute to the policy item
None,
}
impl Satisfaction {
/// Returns whether the [`Satisfaction`] is a leaf item
pub fn is_leaf(&self) -> bool {
match self {
Satisfaction::None | Satisfaction::Complete { .. } => true,
Satisfaction::PartialComplete { .. } | Satisfaction::Partial { .. } => false,
}
}
// add `inner` as one of self's partial items. this only makes sense on partials
fn add(&mut self, inner: &Satisfaction, inner_index: usize) -> Result<(), PolicyError> {
match self {
Satisfaction::None | Satisfaction::Complete { .. } => Err(PolicyError::AddOnLeaf),
Satisfaction::PartialComplete { .. } => Err(PolicyError::AddOnPartialComplete),
Satisfaction::Partial {
n,
ref mut conditions,
ref mut items,
..
} => {
if inner_index >= *n || items.contains(&inner_index) {
return Err(PolicyError::IndexOutOfRange(inner_index));
}
match inner {
// not relevant if not completed yet
Satisfaction::None | Satisfaction::Partial { .. } => return Ok(()),
Satisfaction::Complete { condition } => {
items.push(inner_index);
conditions.insert(inner_index, vec![*condition].into_iter().collect());
}
Satisfaction::PartialComplete {
conditions: other_conditions,
..
} => {
items.push(inner_index);
let conditions_set = other_conditions
.values()
.fold(HashSet::new(), |set, i| set.union(i).cloned().collect());
conditions.insert(inner_index, conditions_set);
}
}
Ok(())
}
}
}
fn finalize(&mut self) {
// if partial try to bump it to a partialcomplete
if let Satisfaction::Partial {
n,
m,
items,
conditions,
sorted,
} = self
{
if items.len() >= *m {
let mut map = BTreeMap::new();
let indexes = combinations(items, *m);
// `indexes` at this point is a Vec<Vec<usize>>, with the "n choose k" of items (m of n)
indexes
.into_iter()
// .inspect(|x| println!("--- orig --- {:?}", x))
// we map each of the combinations of elements into a tuple of ([chosen items], [conditions]). unfortunately, those items have potentially more than one
// condition (think about ORs), so we also use `mix` to expand those, i.e. [[0], [1, 2]] becomes [[0, 1], [0, 2]]. This is necessary to make sure that we
// consider every possible options and check whether or not they are compatible.
// since this step can turn one item of the iterator into multiple ones, we use `flat_map()` to expand them out
.flat_map(|i_vec| {
mix(i_vec
.iter()
.map(|i| {
conditions
.get(i)
.map(|set| set.clone().into_iter().collect())
.unwrap_or_default()
})
.collect())
.into_iter()
.map(|x| (i_vec.clone(), x))
.collect::<Vec<(Vec<usize>, Vec<Condition>)>>()
})
// .inspect(|x| println!("flat {:?}", x))
// try to fold all the conditions for this specific combination of indexes/options. if they are not compatible, try_fold will be Err
.map(|(key, val)| {
(
key,
val.into_iter()
.try_fold(Condition::default(), |acc, v| acc.merge(&v)),
)
})
// .inspect(|x| println!("try_fold {:?}", x))
// filter out all the incompatible combinations
.filter(|(_, val)| val.is_ok())
// .inspect(|x| println!("filter {:?}", x))
// push them into the map
.for_each(|(key, val)| {
map.entry(key)
.or_insert_with(HashSet::new)
.insert(val.unwrap());
});
// TODO: if the map is empty, the conditions are not compatible, return an error?
*self = Satisfaction::PartialComplete {
n: *n,
m: *m,
items: items.clone(),
conditions: map,
sorted: *sorted,
};
}
}
}
}
impl From<bool> for Satisfaction {
fn from(other: bool) -> Self {
if other {
Satisfaction::Complete {
condition: Default::default(),
}
} else {
Satisfaction::None
}
}
}
/// Descriptor spending policy
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct Policy {
/// Identifier for this policy node
pub id: String,
/// Type of this policy node
#[serde(flatten)]
pub item: SatisfiableItem,
/// How much a given PSBT already satisfies this policy node in terms of signatures
pub satisfaction: Satisfaction,
/// How the wallet's descriptor can satisfy this policy node
pub contribution: Satisfaction,
}
/// An extra condition that must be satisfied but that is out of control of the user
#[derive(Hash, Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Default, Serialize)]
pub struct Condition {
/// Optional CheckSequenceVerify condition
#[serde(skip_serializing_if = "Option::is_none")]
pub csv: Option<u32>,
/// Optional timelock condition
#[serde(skip_serializing_if = "Option::is_none")]
pub timelock: Option<u32>,
}
impl Condition {
fn merge_nlocktime(a: u32, b: u32) -> Result<u32, PolicyError> {
if (a < utils::BLOCKS_TIMELOCK_THRESHOLD) != (b < utils::BLOCKS_TIMELOCK_THRESHOLD) {
Err(PolicyError::MixedTimelockUnits)
} else {
Ok(max(a, b))
}
}
fn merge_nsequence(a: u32, b: u32) -> Result<u32, PolicyError> {
let mask = utils::SEQUENCE_LOCKTIME_TYPE_FLAG | utils::SEQUENCE_LOCKTIME_MASK;
let a = a & mask;
let b = b & mask;
if (a < utils::SEQUENCE_LOCKTIME_TYPE_FLAG) != (b < utils::SEQUENCE_LOCKTIME_TYPE_FLAG) {
Err(PolicyError::MixedTimelockUnits)
} else {
Ok(max(a, b))
}
}
pub(crate) fn merge(mut self, other: &Condition) -> Result<Self, PolicyError> {
match (self.csv, other.csv) {
(Some(a), Some(b)) => self.csv = Some(Self::merge_nsequence(a, b)?),
(None, any) => self.csv = any,
_ => {}
}
match (self.timelock, other.timelock) {
(Some(a), Some(b)) => self.timelock = Some(Self::merge_nlocktime(a, b)?),
(None, any) => self.timelock = any,
_ => {}
}
Ok(self)
}
/// Returns `true` if there are no extra conditions to verify
pub fn is_null(&self) -> bool {
self.csv.is_none() && self.timelock.is_none()
}
}
/// Errors that can happen while extracting and manipulating policies
#[derive(Debug, PartialEq, Eq)]
pub enum PolicyError {
/// Not enough items are selected to satisfy a [`SatisfiableItem::Thresh`] or a [`SatisfiableItem::Multisig`]
NotEnoughItemsSelected(String),
/// Index out of range for an item to satisfy a [`SatisfiableItem::Thresh`] or a [`SatisfiableItem::Multisig`]
IndexOutOfRange(usize),
/// Can not add to an item that is [`Satisfaction::None`] or [`Satisfaction::Complete`]
AddOnLeaf,
/// Can not add to an item that is [`Satisfaction::PartialComplete`]
AddOnPartialComplete,
/// Can not merge CSV or timelock values unless both are less than or both are equal or greater than 500_000_000
MixedTimelockUnits,
/// Incompatible conditions (not currently used)
IncompatibleConditions,
}
impl fmt::Display for PolicyError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self)
}
}
impl std::error::Error for PolicyError {}
impl Policy {
fn new(item: SatisfiableItem) -> Self {
Policy {
id: item.id(),
item,
satisfaction: Satisfaction::None,
contribution: Satisfaction::None,
}
}
fn make_and(a: Option<Policy>, b: Option<Policy>) -> Result<Option<Policy>, PolicyError> {
match (a, b) {
(None, None) => Ok(None),
(Some(x), None) | (None, Some(x)) => Ok(Some(x)),
(Some(a), Some(b)) => Self::make_thresh(vec![a, b], 2),
}
}
fn make_or(a: Option<Policy>, b: Option<Policy>) -> Result<Option<Policy>, PolicyError> {
match (a, b) {
(None, None) => Ok(None),
(Some(x), None) | (None, Some(x)) => Ok(Some(x)),
(Some(a), Some(b)) => Self::make_thresh(vec![a, b], 1),
}
}
fn make_thresh(items: Vec<Policy>, threshold: usize) -> Result<Option<Policy>, PolicyError> {
if threshold == 0 {
return Ok(None);
}
let mut contribution = Satisfaction::Partial {
n: items.len(),
m: threshold,
items: vec![],
conditions: Default::default(),
sorted: None,
};
let mut satisfaction = contribution.clone();
for (index, item) in items.iter().enumerate() {
contribution.add(&item.contribution, index)?;
satisfaction.add(&item.satisfaction, index)?;
}
contribution.finalize();
satisfaction.finalize();
let mut policy: Policy = SatisfiableItem::Thresh { items, threshold }.into();
policy.contribution = contribution;
policy.satisfaction = satisfaction;
Ok(Some(policy))
}
fn make_multisig<Ctx: ScriptContext + 'static>(
keys: &[DescriptorPublicKey],
signers: &SignersContainer,
build_sat: BuildSatisfaction,
threshold: usize,
sorted: bool,
secp: &SecpCtx,
) -> Result<Option<Policy>, PolicyError> {
if threshold == 0 {
return Ok(None);
}
let parsed_keys = keys.iter().map(|k| PkOrF::from_key(k, secp)).collect();
let mut contribution = Satisfaction::Partial {
n: keys.len(),
m: threshold,
items: vec![],
conditions: Default::default(),
sorted: Some(sorted),
};
let mut satisfaction = contribution.clone();
for (index, key) in keys.iter().enumerate() {
if signers.find(signer_id(key, secp)).is_some() {
contribution.add(
&Satisfaction::Complete {
condition: Default::default(),
},
index,
)?;
}
if let Some(psbt) = build_sat.psbt() {
if Ctx::find_signature(psbt, key, secp) {
satisfaction.add(
&Satisfaction::Complete {
condition: Default::default(),
},
index,
)?;
}
}
}
satisfaction.finalize();
contribution.finalize();
let mut policy: Policy = SatisfiableItem::Multisig {
keys: parsed_keys,
threshold,
}
.into();
policy.contribution = contribution;
policy.satisfaction = satisfaction;
Ok(Some(policy))
}
/// Return whether or not a specific path in the policy tree is required to unambiguously
/// create a transaction
///
/// What this means is that for some spending policies the user should select which paths in
/// the tree it intends to satisfy while signing, because the transaction must be created differently based
/// on that.
pub fn requires_path(&self) -> bool {
self.get_condition(&BTreeMap::new()).is_err()
}
/// Return the conditions that are set by the spending policy for a given path in the
/// policy tree
pub fn get_condition(
&self,
path: &BTreeMap<String, Vec<usize>>,
) -> Result<Condition, PolicyError> {
// if items.len() == threshold, selected can be omitted and we take all of them by default
let default = match &self.item {
SatisfiableItem::Thresh { items, threshold } if items.len() == *threshold => {
(0..*threshold).collect()
}
SatisfiableItem::Multisig { keys, .. } => (0..keys.len()).collect(),
_ => vec![],
};
let selected = match path.get(&self.id) {
Some(arr) => arr,
_ => &default,
};
match &self.item {
SatisfiableItem::Thresh { items, threshold } => {
let mapped_req = items
.iter()
.map(|i| i.get_condition(path))
.collect::<Result<Vec<_>, _>>()?;
// if all the requirements are null we don't care about `selected` because there
// are no requirements
if mapped_req.iter().all(Condition::is_null) {
return Ok(Condition::default());
}
// if we have something, make sure we have enough items. note that the user can set
// an empty value for this step in case of n-of-n, because `selected` is set to all
// the elements above
if selected.len() < *threshold {
return Err(PolicyError::NotEnoughItemsSelected(self.id.clone()));
}
// check the selected items, see if there are conflicting requirements
let mut requirements = Condition::default();
for item_index in selected {
requirements = requirements.merge(
mapped_req
.get(*item_index)
.ok_or(PolicyError::IndexOutOfRange(*item_index))?,
)?;
}
Ok(requirements)
}
SatisfiableItem::Multisig { keys, threshold } => {
if selected.len() < *threshold {
return Err(PolicyError::NotEnoughItemsSelected(self.id.clone()));
}
if let Some(item) = selected.iter().find(|i| **i >= keys.len()) {
return Err(PolicyError::IndexOutOfRange(*item));
}
Ok(Condition::default())
}
SatisfiableItem::AbsoluteTimelock { value } => Ok(Condition {
csv: None,
timelock: Some(*value),
}),
SatisfiableItem::RelativeTimelock { value } => Ok(Condition {
csv: Some(*value),
timelock: None,
}),
_ => Ok(Condition::default()),
}
}
}
impl From<SatisfiableItem> for Policy {
fn from(other: SatisfiableItem) -> Self {
Self::new(other)
}
}
fn signer_id(key: &DescriptorPublicKey, secp: &SecpCtx) -> SignerId {
match key {
DescriptorPublicKey::SinglePub(DescriptorSinglePub {
key: SinglePubKey::FullKey(pk),
..
}) => pk.to_pubkeyhash().into(),
DescriptorPublicKey::SinglePub(DescriptorSinglePub {
key: SinglePubKey::XOnly(pk),
..
}) => pk.to_pubkeyhash().into(),
DescriptorPublicKey::XPub(xpub) => xpub.root_fingerprint(secp).into(),
}
}
fn make_generic_signature<M: Fn() -> SatisfiableItem, F: Fn(&Psbt) -> bool>(
key: &DescriptorPublicKey,
signers: &SignersContainer,
build_sat: BuildSatisfaction,
secp: &SecpCtx,
make_policy: M,
find_sig: F,
) -> Policy {
let mut policy: Policy = make_policy().into();
policy.contribution = if signers.find(signer_id(key, secp)).is_some() {
Satisfaction::Complete {
condition: Default::default(),
}
} else {
Satisfaction::None
};
if let Some(psbt) = build_sat.psbt() {
policy.satisfaction = if find_sig(psbt) {
Satisfaction::Complete {
condition: Default::default(),
}
} else {
Satisfaction::None
};
}
policy
}
fn generic_sig_in_psbt<
// C is for "check", it's a closure we use to *check* if a psbt input contains the signature
// for a specific key
C: Fn(&PsbtInput, &SinglePubKey) -> bool,
// E is for "extract", it extracts a key from the bip32 derivations found in the psbt input
E: Fn(&PsbtInput, Fingerprint) -> Option<SinglePubKey>,
>(
psbt: &Psbt,
key: &DescriptorPublicKey,
secp: &SecpCtx,
check: C,
extract: E,
) -> bool {
//TODO check signature validity
psbt.inputs.iter().all(|input| match key {
DescriptorPublicKey::SinglePub(DescriptorSinglePub { key, .. }) => check(input, key),
DescriptorPublicKey::XPub(xpub) => {
//TODO check actual derivation matches
match extract(input, xpub.root_fingerprint(secp)) {
Some(pubkey) => check(input, &pubkey),
None => false,
}
}
})
}
trait SigExt: ScriptContext {
fn make_signature(
key: &DescriptorPublicKey,
signers: &SignersContainer,
build_sat: BuildSatisfaction,
secp: &SecpCtx,
) -> Policy;
fn find_signature(psbt: &Psbt, key: &DescriptorPublicKey, secp: &SecpCtx) -> bool;
}
impl<T: ScriptContext + 'static> SigExt for T {
fn make_signature(
key: &DescriptorPublicKey,
signers: &SignersContainer,
build_sat: BuildSatisfaction,
secp: &SecpCtx,
) -> Policy {
if T::as_enum().is_taproot() {
make_generic_signature(
key,
signers,
build_sat,
secp,
|| SatisfiableItem::SchnorrSignature(PkOrF::from_key(key, secp)),
|psbt| Self::find_signature(psbt, key, secp),
)
} else {
make_generic_signature(
key,
signers,
build_sat,
secp,
|| SatisfiableItem::EcdsaSignature(PkOrF::from_key(key, secp)),
|psbt| Self::find_signature(psbt, key, secp),
)
}
}
fn find_signature(psbt: &Psbt, key: &DescriptorPublicKey, secp: &SecpCtx) -> bool {
if T::as_enum().is_taproot() {
generic_sig_in_psbt(
psbt,
key,
secp,
|input, pk| {
let pk = match pk {
SinglePubKey::XOnly(pk) => pk,
_ => return false,
};
if input.tap_internal_key == Some(*pk) && input.tap_key_sig.is_some() {
true
} else {
input.tap_script_sigs.keys().any(|(sk, _)| sk == pk)
}
},
|input, fing| {
input
.tap_key_origins
.iter()
.find(|(_, (_, (f, _)))| f == &fing)
.map(|(pk, _)| SinglePubKey::XOnly(*pk))
},
)
} else {
generic_sig_in_psbt(
psbt,
key,
secp,
|input, pk| match pk {
SinglePubKey::FullKey(pk) => input.partial_sigs.contains_key(pk),
_ => false,
},
|input, fing| {
input
.bip32_derivation
.iter()
.find(|(_, (f, _))| f == &fing)
.map(|(pk, _)| SinglePubKey::FullKey(PublicKey::new(*pk)))
},
)
}
}
}
impl<Ctx: ScriptContext + 'static> ExtractPolicy for Miniscript<DescriptorPublicKey, Ctx> {
fn extract_policy(
&self,
signers: &SignersContainer,
build_sat: BuildSatisfaction,
secp: &SecpCtx,
) -> Result<Option<Policy>, Error> {
Ok(match &self.node {
// Leaves
Terminal::True | Terminal::False => None,
Terminal::PkK(pubkey) => Some(Ctx::make_signature(pubkey, signers, build_sat, secp)),
Terminal::PkH(pubkey_hash) => {
Some(Ctx::make_signature(pubkey_hash, signers, build_sat, secp))
}
Terminal::After(value) => {
let mut policy: Policy = SatisfiableItem::AbsoluteTimelock { value: *value }.into();
policy.contribution = Satisfaction::Complete {
condition: Condition {
timelock: Some(*value),
csv: None,
},
};
if let BuildSatisfaction::PsbtTimelocks {
current_height,
psbt,
..
} = build_sat
{
let after = After::new(Some(current_height), false);
let after_sat = Satisfier::<bitcoin::PublicKey>::check_after(&after, *value);
let inputs_sat = psbt_inputs_sat(psbt)
.all(|sat| Satisfier::<bitcoin::PublicKey>::check_after(&sat, *value));
if after_sat && inputs_sat {
policy.satisfaction = policy.contribution.clone();
}
}
Some(policy)
}
Terminal::Older(value) => {
let mut policy: Policy = SatisfiableItem::RelativeTimelock { value: *value }.into();
policy.contribution = Satisfaction::Complete {
condition: Condition {
timelock: None,
csv: Some(*value),
},
};
if let BuildSatisfaction::PsbtTimelocks {
current_height,
input_max_height,
psbt,
} = build_sat
{
let older = Older::new(Some(current_height), Some(input_max_height), false);
let older_sat = Satisfier::<bitcoin::PublicKey>::check_older(&older, *value);
let inputs_sat = psbt_inputs_sat(psbt)
.all(|sat| Satisfier::<bitcoin::PublicKey>::check_older(&sat, *value));
if older_sat && inputs_sat {
policy.satisfaction = policy.contribution.clone();
}
}
Some(policy)
}
Terminal::Sha256(hash) => Some(SatisfiableItem::Sha256Preimage { hash: *hash }.into()),
Terminal::Hash256(hash) => {
Some(SatisfiableItem::Hash256Preimage { hash: *hash }.into())
}
Terminal::Ripemd160(hash) => {
Some(SatisfiableItem::Ripemd160Preimage { hash: *hash }.into())
}
Terminal::Hash160(hash) => {
Some(SatisfiableItem::Hash160Preimage { hash: *hash }.into())
}
Terminal::Multi(k, pks) | Terminal::MultiA(k, pks) => {
Policy::make_multisig::<Ctx>(pks, signers, build_sat, *k, false, secp)?
}
// Identities
Terminal::Alt(inner)
| Terminal::Swap(inner)
| Terminal::Check(inner)
| Terminal::DupIf(inner)
| Terminal::Verify(inner)
| Terminal::NonZero(inner)
| Terminal::ZeroNotEqual(inner) => inner.extract_policy(signers, build_sat, secp)?,
// Complex policies
Terminal::AndV(a, b) | Terminal::AndB(a, b) => Policy::make_and(
a.extract_policy(signers, build_sat, secp)?,
b.extract_policy(signers, build_sat, secp)?,
)?,
Terminal::AndOr(x, y, z) => Policy::make_or(
Policy::make_and(
x.extract_policy(signers, build_sat, secp)?,
y.extract_policy(signers, build_sat, secp)?,
)?,
z.extract_policy(signers, build_sat, secp)?,
)?,
Terminal::OrB(a, b)
| Terminal::OrD(a, b)
| Terminal::OrC(a, b)
| Terminal::OrI(a, b) => Policy::make_or(
a.extract_policy(signers, build_sat, secp)?,
b.extract_policy(signers, build_sat, secp)?,
)?,
Terminal::Thresh(k, nodes) => {
let mut threshold = *k;
let mapped: Vec<_> = nodes
.iter()
.map(|n| n.extract_policy(signers, build_sat, secp))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.flatten()
.collect();
if mapped.len() < nodes.len() {
threshold = match threshold.checked_sub(nodes.len() - mapped.len()) {
None => return Ok(None),
Some(x) => x,
};
}
Policy::make_thresh(mapped, threshold)?