@@ -68,7 +68,7 @@ open import Data.Product using (_,_)
68
68
69
69
∧-identityʳ : RightIdentity ⊤ _∧_
70
70
∧-identityʳ x = begin
71
- x ∧ ⊤ ≈⟨ ∧-congʳ (sym (∨-complementʳ _)) ⟩
71
+ x ∧ ⊤ ≈⟨ ∧-congˡ (sym (∨-complementʳ _)) ⟩
72
72
x ∧ (x ∨ ¬ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩
73
73
x ∎
74
74
@@ -80,7 +80,7 @@ open import Data.Product using (_,_)
80
80
81
81
∨-identityʳ : RightIdentity ⊥ _∨_
82
82
∨-identityʳ x = begin
83
- x ∨ ⊥ ≈⟨ ∨-congʳ $ sym (∧-complementʳ _) ⟩
83
+ x ∨ ⊥ ≈⟨ ∨-congˡ $ sym (∧-complementʳ _) ⟩
84
84
x ∨ x ∧ ¬ x ≈⟨ ∨-absorbs-∧ _ _ ⟩
85
85
x ∎
86
86
@@ -92,9 +92,9 @@ open import Data.Product using (_,_)
92
92
93
93
∧-zeroʳ : RightZero ⊥ _∧_
94
94
∧-zeroʳ x = begin
95
- x ∧ ⊥ ≈⟨ ∧-congʳ $ sym (∧-complementʳ _) ⟩
95
+ x ∧ ⊥ ≈⟨ ∧-congˡ $ sym (∧-complementʳ _) ⟩
96
96
x ∧ x ∧ ¬ x ≈˘⟨ ∧-assoc _ _ _ ⟩
97
- (x ∧ x) ∧ ¬ x ≈⟨ ∧-congˡ $ ∧-idempotent _ ⟩
97
+ (x ∧ x) ∧ ¬ x ≈⟨ ∧-congʳ $ ∧-idempotent _ ⟩
98
98
x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩
99
99
⊥ ∎
100
100
@@ -106,9 +106,9 @@ open import Data.Product using (_,_)
106
106
107
107
∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤
108
108
∨-zeroʳ x = begin
109
- x ∨ ⊤ ≈⟨ ∨-congʳ $ sym (∨-complementʳ _) ⟩
109
+ x ∨ ⊤ ≈⟨ ∨-congˡ $ sym (∨-complementʳ _) ⟩
110
110
x ∨ x ∨ ¬ x ≈˘⟨ ∨-assoc _ _ _ ⟩
111
- (x ∨ x) ∨ ¬ x ≈⟨ ∨-congˡ $ ∨-idempotent _ ⟩
111
+ (x ∨ x) ∨ ¬ x ≈⟨ ∨-congʳ $ ∨-idempotent _ ⟩
112
112
x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩
113
113
⊤ ∎
114
114
@@ -213,12 +213,12 @@ private
213
213
lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y
214
214
lemma x y x∧y=⊥ x∨y=⊤ = begin
215
215
¬ x ≈˘⟨ ∧-identityʳ _ ⟩
216
- ¬ x ∧ ⊤ ≈˘⟨ ∧-congʳ x∨y=⊤ ⟩
216
+ ¬ x ∧ ⊤ ≈˘⟨ ∧-congˡ x∨y=⊤ ⟩
217
217
¬ x ∧ (x ∨ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
218
- ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congˡ $ ∧-complementˡ _ ⟩
219
- ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congˡ x∧y=⊥ ⟩
218
+ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congʳ $ ∧-complementˡ _ ⟩
219
+ ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congʳ x∧y=⊥ ⟩
220
220
x ∧ y ∨ ¬ x ∧ y ≈˘⟨ ∧-∨-distribʳ _ _ _ ⟩
221
- (x ∨ ¬ x) ∧ y ≈⟨ ∧-congˡ $ ∨-complementʳ _ ⟩
221
+ (x ∨ ¬ x) ∧ y ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
222
222
⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩
223
223
y ∎
224
224
@@ -236,26 +236,26 @@ deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂
236
236
where
237
237
lem₁ = begin
238
238
(x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
239
- (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congˡ $ ∧-congˡ $ ∧-comm _ _ ⟩
239
+ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congʳ $ ∧-congʳ $ ∧-comm _ _ ⟩
240
240
(y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩
241
- y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congʳ $ ∧-complementʳ _) ⟨ ∨-cong ⟩
242
- (∧-congʳ $ ∧-complementʳ _) ⟩
241
+ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congˡ $ ∧-complementʳ _) ⟨ ∨-cong ⟩
242
+ (∧-congˡ $ ∧-complementʳ _) ⟩
243
243
(y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩
244
244
⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩
245
245
⊥ ∎
246
246
247
247
lem₃ = begin
248
248
(x ∧ y) ∨ ¬ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩
249
- (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congˡ $ ∨-complementʳ _ ⟩
249
+ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
250
250
⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩
251
251
y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩
252
252
¬ x ∨ y ∎
253
253
254
254
lem₂ = begin
255
255
(x ∧ y) ∨ (¬ x ∨ ¬ y) ≈˘⟨ ∨-assoc _ _ _ ⟩
256
- ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congˡ lem₃ ⟩
256
+ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congʳ lem₃ ⟩
257
257
(¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩
258
- ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congʳ $ ∨-complementʳ _ ⟩
258
+ ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congˡ $ ∨-complementʳ _ ⟩
259
259
¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩
260
260
⊤ ∎
261
261
@@ -325,19 +325,19 @@ module XorRing
325
325
⊕-¬-distribˡ x y = begin
326
326
¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩
327
327
¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (∧-∨-distribʳ _ _ _) ⟩
328
- ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congʳ $ ∧-congʳ $ ¬-cong (∧-comm _ _) ⟩
328
+ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congˡ $ ∧-congˡ $ ¬-cong (∧-comm _ _) ⟩
329
329
¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩
330
330
¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩
331
- ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
332
- (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congʳ $ ¬-involutive _) (∧-comm _ _) ⟩
331
+ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
332
+ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congˡ $ ¬-involutive _) (∧-comm _ _) ⟩
333
333
(¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈˘⟨ ⊕-def _ _ ⟩
334
334
¬ x ⊕ y ∎
335
335
where
336
336
lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y
337
337
lem x y = begin
338
- x ∧ ¬ (x ∧ y) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
338
+ x ∧ ¬ (x ∧ y) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
339
339
x ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
340
- (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congˡ $ ∧-complementʳ _ ⟩
340
+ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congʳ $ ∧-complementʳ _ ⟩
341
341
⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩
342
342
x ∧ ¬ y ∎
343
343
@@ -359,7 +359,7 @@ module XorRing
359
359
⊕-identityˡ x = begin
360
360
⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩
361
361
(⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩
362
- x ∧ ¬ ⊥ ≈⟨ ∧-congʳ ¬⊥=⊤ ⟩
362
+ x ∧ ¬ ⊥ ≈⟨ ∧-congˡ ¬⊥=⊤ ⟩
363
363
x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩
364
364
x ∎
365
365
@@ -384,45 +384,45 @@ module XorRing
384
384
385
385
∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_
386
386
∧-distribˡ-⊕ x y z = begin
387
- x ∧ (y ⊕ z) ≈⟨ ∧-congʳ $ ⊕-def _ _ ⟩
387
+ x ∧ (y ⊕ z) ≈⟨ ∧-congˡ $ ⊕-def _ _ ⟩
388
388
x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
389
- (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
389
+ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
390
390
(x ∧ (y ∨ z)) ∧
391
391
(¬ y ∨ ¬ z) ≈˘⟨ ∨-identityˡ _ ⟩
392
392
⊥ ∨
393
393
((x ∧ (y ∨ z)) ∧
394
- (¬ y ∨ ¬ z)) ≈⟨ ∨-congˡ lem₃ ⟩
394
+ (¬ y ∨ ¬ z)) ≈⟨ ∨-congʳ lem₃ ⟩
395
395
((x ∧ (y ∨ z)) ∧ ¬ x) ∨
396
396
((x ∧ (y ∨ z)) ∧
397
397
(¬ y ∨ ¬ z)) ≈˘⟨ ∧-∨-distribˡ _ _ _ ⟩
398
398
(x ∧ (y ∨ z)) ∧
399
- (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congʳ $ ∨-congʳ (deMorgan₁ _ _) ⟩
399
+ (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congˡ $ ∨-congˡ (deMorgan₁ _ _) ⟩
400
400
(x ∧ (y ∨ z)) ∧
401
- (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congʳ (deMorgan₁ _ _) ⟩
401
+ (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congˡ (deMorgan₁ _ _) ⟩
402
402
(x ∧ (y ∨ z)) ∧
403
403
¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩
404
404
(x ∧ (y ∨ z)) ∧
405
- ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congˡ $ ∧-∨-distribˡ _ _ _ ⟩
405
+ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congʳ $ ∧-∨-distribˡ _ _ _ ⟩
406
406
((x ∧ y) ∨ (x ∧ z)) ∧
407
407
¬ ((x ∧ y) ∧ (x ∧ z)) ≈˘⟨ ⊕-def _ _ ⟩
408
408
(x ∧ y) ⊕ (x ∧ z) ∎
409
409
where
410
410
lem₂ = begin
411
411
x ∧ (y ∧ z) ≈˘⟨ ∧-assoc _ _ _ ⟩
412
- (x ∧ y) ∧ z ≈⟨ ∧-congˡ $ ∧-comm _ _ ⟩
412
+ (x ∧ y) ∧ z ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
413
413
(y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩
414
414
y ∧ (x ∧ z) ∎
415
415
416
416
lem₁ = begin
417
- x ∧ (y ∧ z) ≈˘⟨ ∧-congˡ (∧-idempotent _) ⟩
417
+ x ∧ (y ∧ z) ≈˘⟨ ∧-congʳ (∧-idempotent _) ⟩
418
418
(x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩
419
- x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congʳ lem₂ ⟩
419
+ x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congˡ lem₂ ⟩
420
420
x ∧ (y ∧ (x ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
421
421
(x ∧ y) ∧ (x ∧ z) ∎
422
422
423
423
lem₃ = begin
424
424
⊥ ≈˘⟨ ∧-zeroʳ _ ⟩
425
- (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congʳ (∧-complementʳ _) ⟩
425
+ (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ _) ⟩
426
426
(y ∨ z) ∧ (x ∧ ¬ x) ≈˘⟨ ∧-assoc _ _ _ ⟩
427
427
((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
428
428
(x ∧ (y ∨ z)) ∧ ¬ x ∎
@@ -457,7 +457,7 @@ module XorRing
457
457
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩
458
458
((x ∨ y) ∨ z) ∧
459
459
(((x ∨ ¬ y) ∨ ¬ z) ∧
460
- (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congʳ lem₅ ⟩
460
+ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congˡ lem₅ ⟩
461
461
((x ∨ y) ∨ z) ∧
462
462
(((¬ x ∨ ¬ y) ∨ z) ∧
463
463
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈˘⟨ ∧-assoc _ _ _ ⟩
@@ -470,14 +470,14 @@ module XorRing
470
470
where
471
471
lem₁ = begin
472
472
((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩
473
- ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congˡ $ ∧-congʳ (deMorgan₁ _ _) ⟩
473
+ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩
474
474
((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎
475
475
476
476
lem₂' = begin
477
477
(x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
478
478
(⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
479
479
⟨ ∧-cong ⟩
480
- (∧-congʳ $ ∨-complementˡ _) ⟩
480
+ (∧-congˡ $ ∨-complementˡ _) ⟩
481
481
((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧
482
482
((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈˘⟨ lemma₂ _ _ _ _ ⟩
483
483
(¬ x ∧ ¬ y) ∨ (x ∧ y) ≈˘⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
@@ -486,12 +486,12 @@ module XorRing
486
486
487
487
lem₂ = begin
488
488
((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩
489
- ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congˡ lem₂' ⟩
489
+ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂' ⟩
490
490
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩
491
491
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎
492
492
493
493
lem₃ = begin
494
- x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congʳ $ ∧-congʳ $ deMorgan₁ _ _ ⟩
494
+ x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ $ ∧-congˡ $ deMorgan₁ _ _ ⟩
495
495
x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩
496
496
(x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
497
497
((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎
@@ -503,14 +503,14 @@ module XorRing
503
503
((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧
504
504
((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
505
505
⟨ ∧-cong ⟩
506
- (∧-congʳ $ ∨-complementˡ _) ⟩
506
+ (∧-congˡ $ ∨-complementˡ _) ⟩
507
507
(⊤ ∧ (y ∨ ¬ z)) ∧
508
508
((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
509
509
(y ∨ ¬ z) ∧ (¬ y ∨ z) ∎
510
510
511
511
lem₄ = begin
512
512
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩
513
- ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congʳ lem₄' ⟩
513
+ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄' ⟩
514
514
¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩
515
515
(¬ x ∨ (y ∨ ¬ z)) ∧
516
516
(¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
@@ -523,7 +523,7 @@ module XorRing
523
523
((x ∨ ¬ y) ∨ ¬ z) ∧
524
524
(((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
525
525
(((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
526
- ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congˡ $ ∧-comm _ _ ⟩
526
+ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
527
527
(((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
528
528
((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩
529
529
((¬ x ∨ ¬ y) ∨ z) ∧
0 commit comments