@@ -60,12 +60,12 @@ instance
60
60
iLawfulEqEither : ⦃ iEqA : Eq a ⦄ → ⦃ iEqB : Eq b ⦄
61
61
→ ⦃ IsLawfulEq a ⦄ → ⦃ IsLawfulEq b ⦄
62
62
→ IsLawfulEq (Either a b)
63
- iLawfulEqEither .isEquality (Left _) (Right _) = λ ()
64
- iLawfulEqEither .isEquality (Right _) (Left _) = λ ()
65
- iLawfulEqEither .isEquality a@ (Left x) b@ (Left y) = mapReflects
66
- (cong Left) (Left-injective a b ) (isEquality x y)
67
- iLawfulEqEither .isEquality a@ (Right x) b@ (Right y) = mapReflects
68
- (cong Right) (Right-injective a b ) (isEquality x y)
63
+ iLawfulEqEither .isEquality (Left _) (Right _) = λ ()
64
+ iLawfulEqEither .isEquality (Right _) (Left _) = λ ()
65
+ iLawfulEqEither .isEquality (Left x) (Left y) = mapReflects
66
+ (cong Left) (Left-injective) (isEquality x y)
67
+ iLawfulEqEither .isEquality (Right x) (Right y) = mapReflects
68
+ (cong Right) (Right-injective) (isEquality x y)
69
69
70
70
iLawfulEqInt : IsLawfulEq Int
71
71
iLawfulEqInt .isEquality (int64 x) (int64 y) = mapReflects
@@ -92,11 +92,11 @@ instance
92
92
... | False = λ h → (nequality x y h₁) (∷-injective-left h)
93
93
94
94
iLawfulEqMaybe : ⦃ iEqA : Eq a ⦄ → ⦃ IsLawfulEq a ⦄ → IsLawfulEq (Maybe a)
95
- iLawfulEqMaybe .isEquality Nothing Nothing = refl
96
- iLawfulEqMaybe .isEquality Nothing (Just _) = λ ()
97
- iLawfulEqMaybe .isEquality (Just _) Nothing = λ ()
95
+ iLawfulEqMaybe .isEquality Nothing Nothing = refl
96
+ iLawfulEqMaybe .isEquality Nothing (Just _) = λ ()
97
+ iLawfulEqMaybe .isEquality (Just _) Nothing = λ ()
98
98
iLawfulEqMaybe .isEquality (Just x) (Just y) = mapReflects
99
- (cong Just) injective (isEquality x y)
99
+ (cong Just) ( injective-Just {x = x} {y = y}) (isEquality x y)
100
100
101
101
iLawfulEqOrdering : IsLawfulEq Ordering
102
102
iLawfulEqOrdering .isEquality LT LT = refl
@@ -112,7 +112,8 @@ instance
112
112
iLawfulEqTuple₂ : ⦃ iEqA : Eq a ⦄ ⦃ iEqB : Eq b ⦄
113
113
→ ⦃ IsLawfulEq a ⦄ → ⦃ IsLawfulEq b ⦄
114
114
→ IsLawfulEq (a × b)
115
- iLawfulEqTuple₂ .isEquality (x₁ , x₂) (y₁ , y₂) with (x₁ == y₁) in h₁
115
+ iLawfulEqTuple₂ .isEquality (x₁ , x₂) (y₁ , y₂)
116
+ with (x₁ == y₁) in h₁
116
117
... | True = mapReflects
117
118
(λ h → cong₂ _,_ (equality x₁ y₁ h₁) h)
118
119
(cong snd)
@@ -122,7 +123,8 @@ instance
122
123
iLawfulEqTuple₃ : ⦃ iEqA : Eq a ⦄ ⦃ iEqB : Eq b ⦄ ⦃ iEqC : Eq c ⦄
123
124
→ ⦃ IsLawfulEq a ⦄ → ⦃ IsLawfulEq b ⦄ → ⦃ IsLawfulEq c ⦄
124
125
→ IsLawfulEq (a × b × c)
125
- iLawfulEqTuple₃ .isEquality (x₁ , x₂ , x₃) (y₁ , y₂ , y₃) with (x₁ == y₁) in h₁
126
+ iLawfulEqTuple₃ .isEquality (x₁ , x₂ , x₃) (y₁ , y₂ , y₃)
127
+ with (x₁ == y₁) in h₁
126
128
... | True = mapReflects
127
129
(λ h → cong₂ (λ a (b , c) → a , b , c) (equality x₁ y₁ h₁) h)
128
130
(cong λ h → snd₃ h , thd₃ h)
0 commit comments