-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathdetect_type.py
252 lines (212 loc) · 7.94 KB
/
detect_type.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# -*- coding: utf-8 -*-
"""
Code for computing the type score.
Author: Gertjan van den Burg
"""
import json
from typing import Dict
from typing import List
from typing import Optional
from typing import Pattern
from ._regexes import DEFAULT_TYPE_REGEXES
from .cparser_util import parse_string
from .dialect import SimpleDialect
DEFAULT_EPS_TYPE: float = 1e-10
class TypeDetector:
def __init__(
self,
patterns: Optional[Dict[str, Pattern[str]]] = None,
strip_whitespace: bool = True,
) -> None:
self.patterns = patterns or DEFAULT_TYPE_REGEXES.copy()
self.strip_whitespace = strip_whitespace
self._register_type_tests()
def _register_type_tests(self) -> None:
self._type_tests = [
("empty", self.is_empty),
("url", self.is_url),
("email", self.is_email),
("ipv4", self.is_ipv4),
("number", self.is_number),
("time", self.is_time),
("percentage", self.is_percentage),
("currency", self.is_currency),
("unix_path", self.is_unix_path),
("nan", self.is_nan),
("date", self.is_date),
("datetime", self.is_datetime),
("unicode_alphanum", self.is_unicode_alphanum),
("bytearray", self.is_bytearray),
("json", self.is_json_obj),
]
def list_known_types(self) -> List[str]:
return [tt[0] for tt in self._type_tests]
def is_known_type(self, cell: str, is_quoted: bool = False) -> bool:
return self.detect_type(cell, is_quoted=is_quoted) is not None
def detect_type(self, cell: str, is_quoted: bool = False) -> Optional[str]:
cell = cell.strip() if self.strip_whitespace else cell
for name, func in self._type_tests:
if func(cell, is_quoted=is_quoted):
return name
return None
def _run_regex(self, cell: str, patname: str) -> bool:
cell = cell.strip() if self.strip_whitespace else cell
pat = self.patterns.get(patname, None)
assert pat is not None
match = pat.fullmatch(cell)
return match is not None
def is_number(self, cell: str, is_quoted: bool = False) -> bool:
if cell == "":
return False
if self._run_regex(cell, "number_1"):
return True
if self._run_regex(cell, "number_2"):
return True
if self._run_regex(cell, "number_3"):
return True
return False
def is_ipv4(self, cell: str, is_quoted: bool = False) -> bool:
return self._run_regex(cell, "ipv4")
def is_url(self, cell: str, is_quoted: bool = False) -> bool:
return self._run_regex(cell, "url")
def is_email(self, cell: str, is_quoted: bool = False) -> bool:
return self._run_regex(cell, "email")
def is_unicode_alphanum(self, cell: str, is_quoted: bool = False) -> bool:
if is_quoted:
return self._run_regex(cell, "unicode_alphanum_quoted")
return self._run_regex(cell, "unicode_alphanum")
def is_date(self, cell: str, is_quoted: bool = False) -> bool:
# This function assumes the cell is not a number.
cell = cell.strip() if self.strip_whitespace else cell
if not cell:
return False
if not cell[0].isdigit():
return False
return self._run_regex(cell, "date")
def is_time(self, cell: str, is_quoted: bool = False) -> bool:
cell = cell.strip() if self.strip_whitespace else cell
if not cell:
return False
if not cell[0].isdigit():
return False
return (
self._run_regex(cell, "time_hmm")
or self._run_regex(cell, "time_hhmm")
or self._run_regex(cell, "time_hhmmss")
or self._run_regex(cell, "time_hhmmsszz")
)
def is_empty(self, cell: str, is_quoted: bool = False) -> bool:
return cell == ""
def is_percentage(self, cell: str, is_quoted: bool = False) -> bool:
return cell.endswith("%") and self.is_number(cell.rstrip("%"))
def is_currency(self, cell: str, is_quoted: bool = False) -> bool:
pat = self.patterns.get("currency", None)
assert pat is not None
m = pat.fullmatch(cell)
if m is None:
return False
grp = m.group(1)
if not self.is_number(grp):
return False
return True
def is_datetime(self, cell: str, is_quoted: bool = False) -> bool:
# Takes care of cells with '[date] [time]' and '[date]T[time]' (iso)
if not cell:
return False
if not cell[0].isdigit():
return False
if " " in cell:
parts = cell.split(" ")
if len(parts) > 2:
return False
return self.is_date(parts[0]) and self.is_time(parts[1])
elif "T" in cell:
parts = cell.split("T")
if len(parts) > 2:
return False
isdate = self.is_date(parts[0])
if not isdate:
return False
# [date]T[time] or [date]T[time]Z
if parts[1].endswith("Z") and self.is_time(parts[1][:-1]):
return True
if self.is_time(parts[1]):
return True
# [date]T[time][+-][time]
if "+" in parts[1]:
subparts = parts[1].split("+")
istime1 = self.is_time(subparts[0])
if not istime1:
return False
istime2 = self.is_time(subparts[1])
if istime2:
return True
if self._run_regex(subparts[1], "time_HHMM"):
return True
if self._run_regex(subparts[1], "time_HH"):
return True
elif "-" in parts[1]:
subparts = parts[1].split("-")
istime1 = self.is_time(subparts[0])
if not istime1:
return False
istime2 = self.is_time(subparts[1])
if istime2:
return True
if self._run_regex(subparts[1], "time_HHMM"):
return True
if self._run_regex(subparts[1], "time_HH"):
return True
return False
def is_nan(self, cell: str, is_quoted: bool = False) -> bool:
if cell.lower() in ["n/a", "na", "nan"]:
return True
return False
def is_unix_path(self, cell: str, is_quoted: bool = False) -> bool:
return self._run_regex(cell, "unix_path")
def is_bytearray(self, cell: str, is_quoted: bool = False) -> bool:
return cell.startswith("bytearray(b") and cell.endswith(")")
def is_json_obj(self, cell: str, is_quoted: bool = False) -> bool:
if not (cell.startswith("{") and cell.endswith("}")):
return False
try:
_ = json.loads(cell)
except json.JSONDecodeError:
return False
return True
def gen_known_type(cells):
"""
Utility that yields a generator over whether or not the provided cells are
of a known type or not.
"""
td = TypeDetector()
for cell in cells:
yield td.is_known_type(cell)
def type_score(
data: str, dialect: SimpleDialect, eps: float = DEFAULT_EPS_TYPE
) -> float:
"""
Compute the type score as the ratio of cells with a known type.
Parameters
----------
data: str
the data as a single string
dialect: SimpleDialect
the dialect to use
eps: float
the minimum value of the type score
Returns
-------
type_score: float
The computed type score
"""
total = 0
known = 0
td = TypeDetector()
for row in parse_string(data, dialect, return_quoted=True):
for cell, is_quoted in row:
total += 1
known += td.is_known_type(cell, is_quoted=is_quoted)
if total == 0:
return eps
return max(eps, known / total)