-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame.py
249 lines (201 loc) · 8.44 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.widgets import Slider, RadioButtons
from matplotlib.patches import Polygon, Circle, FancyArrowPatch
from copy import copy
import sys
sys.path.insert(0, "./bounce-viz/src/")
from simple_polygon import Simple_Polygon
from helper.shoot_ray_helper import ClosestPtFromPt
from maps import small_square, poly1, poly2, poly3, bigpoly, rectangle
TWOPI = 2*np.pi
EPSILON = 0.001
def rotate_vector(v, theta):
vx, vy = v[0], v[1]
return np.array( [np.cos(theta)*vx - np.sin(theta)*vy,
np.sin(theta)*vx + np.cos(theta)*vy])
def fix_angle(theta):
if theta < 0:
return fix_angle(theta+TWOPI)
elif theta > TWOPI:
return fix_angle(theta-TWOPI)
else:
return theta
class Game(object):
def __init__(self, env):
self.env = env
self.m = len(self.env.complete_vertex_list)
self.fig, self.ax = plt.subplots()
self.fig.subplots_adjust(left=0.3, bottom=0.25)
self.ax.set_aspect('equal')
initial_amp = 0.01
xs = [x for (x,y) in self.env.complete_vertex_list]
ys = [y for (x,y) in self.env.complete_vertex_list]
XMIN = np.amin(xs)-1
XMAX = np.amax(xs)+1
YMIN = np.amin(ys)-1
YMAX = np.amax(ys)+1
axis = plt.axis([XMIN,XMAX,YMIN,YMAX])
# Sliders
s_slider_ax = plt.axes([0.25, .15, 0.65, 0.03])
self.slide_s = Slider(s_slider_ax, 'Start', 0, 1, valinit=initial_amp)
theta_slider_ax = plt.axes([0.25, .1, 0.65, 0.03])
self.slide_theta = Slider(theta_slider_ax, 'Theta', 0.01, 3.14, valinit=initial_amp)
alpha_slider_ax = plt.axes([0.25, .05, 0.65, 0.03])
self.slide_alpha = Slider(alpha_slider_ax, 'Alpha', 0.01, 3.14, valinit=initial_amp)
# Buttons
rax = plt.axes([0.05, 0.7, 0.15, 0.15], facecolor='lightgoldenrodyellow')
self.radio = RadioButtons(rax, ('Fixed', 'Fixed Monotonic', 'Relative'))
self.radio.on_clicked(self.brulefunc)
polys = self.draw_poly(self.env)
scale = 0.01*(XMAX-XMIN)
self.p = Circle([0.,0.], ec='r', fc='r', lw=2, radius=scale)
self.ax.add_patch(self.p)
self.s = 0.
self.theta = 0.
self.alpha = 0.
self.brule = self.fixed_brule
self.n = 60
def draw_poly(self, poly):
outer = [p for (i,p) in poly.vertex_list_per_poly[0]]
p = Polygon(outer, ec='k', lw=2, fc='none')
self.ax.add_patch(p)
# TODO implement holes
for hole in poly.vertex_list_per_poly[1:]:
pass
def s_to_point(self, s):
outer_map, holes_map = self.env.compute_unit_interval_mapping()
pts = self.env.complete_vertex_list
n = self.env.size
if s < 0.0 or s > 1.0:
raise ValueError("Start position must be on polygon")
else:
sv = 0.
j = 0
for i in range(n):
sv = outer_map[i]
j = copy(i)
if sv > s:
break
elif i == n-1:
j = n
break
elif abs(s - sv) < EPSILON:
break
s_on_edge = (s-outer_map[(j-1)])/(outer_map[j]-outer_map[(j-1)])
s_pt = pts[j-1] + s_on_edge*(pts[j%n]-pts[j-1])
return s_pt, j-1
def relative_brule(self, theta, edge_i, prev_global_theta):
new_global_theta = fix_angle(prev_global_theta + theta)
pt1 = self.env.complete_vertex_list[edge_i]
pt2 = self.env.complete_vertex_list[(edge_i + 1) % self.env.size]
edge_v = pt2 - pt1
edge_theta = np.arctan2(edge_v[1], edge_v[0])
if new_global_theta > edge_theta and new_global_theta < (edge_theta + np.pi):
return new_global_theta
else:
return self.relative_brule(theta, edge_i, new_global_theta)
# compute theta relative to x axis for fixed bounce rule
def fixed_brule(self, theta, edge_i, prev_global_theta):
pt1 = self.env.complete_vertex_list[edge_i]
pt2 = self.env.complete_vertex_list[(edge_i + 1) % self.env.size]
edge_v = pt2 - pt1
out_v = rotate_vector(edge_v, theta)
global_theta = np.arctan2(out_v[1], out_v[0])
return global_theta
# compute theta relative to x axis for fixed monotonic bounce rule
def fixed_monotonic_brule(self, theta, edge_i, prev_global_theta):
pt1 = self.env.complete_vertex_list[edge_i]
pt2 = self.env.complete_vertex_list[(edge_i + 1) % self.env.size]
edge_v = pt2 - pt1
theta_edge = np.arctan2(edge_v[1], edge_v[0])
prev_global_theta_edge_frame = fix_angle(prev_global_theta - theta_edge)
if prev_global_theta_edge_frame <= 0 or prev_global_theta_edge_frame <= np.pi:
raise ValueError("rotation failed")
# previous bounce coming in from the right
elif prev_global_theta_edge_frame < 3*np.pi/2:
# if theta would reverse direction, flip theta
if theta < np.pi/2:
theta = np.pi - theta
# previous bounce coming in from the left
elif prev_global_theta_edge_frame >= 3*np.pi/2 and prev_global_theta_edge_frame < 2*np.pi:
if theta > np.pi/2:
theta = np.pi - theta
out_v = rotate_vector(edge_v, theta)
global_theta = np.arctan2(out_v[1], out_v[0])
return global_theta
# theta defined relative to tangent. right pointing tangent theta = 0
# normal theta = pi/2
def do_bounce(self, pt, edge_i, heading):
state = (pt[0], pt[1], heading)
ret = ClosestPtFromPt(state, self.env, last_bounce_edge=edge_i)
if ret:
bounce_point, bounce_edge = ret
return bounce_point, bounce_edge
else:
raise ValueError("bounce failed!")
def make_trajectory(self):
start_pt, j = self.s_to_point(self.s)
pts = [start_pt]
start_edge = [self.env.complete_vertex_list[j], self.env.complete_vertex_list[(j+1) % self.env.size]]
edge_vec = start_edge[1] - start_edge[0]
global_theta = np.arctan2(edge_vec[1], edge_vec[0]) + self.alpha
next_pt, next_edge = self.do_bounce(start_pt,
j,
global_theta)
pts.append(next_pt)
start_pt = next_pt
j = next_edge
for i in range(self.n):
next_global_theta = self.brule(self.theta, j, global_theta)
next_pt, next_edge = self.do_bounce(start_pt,
j,
next_global_theta)
pts.append(next_pt)
start_pt = next_pt
j = next_edge
global_theta = next_global_theta
return pts
def draw_bounces(self, traj):
self.p.center = traj[0][0], traj[0][1]
bounces = zip(traj, traj[1:])
transparency = 0.1
for (pt1, pt2) in bounces:
transparency += 0.9/self.n
a = FancyArrowPatch(posA = pt1, posB = pt2, arrowstyle="-", alpha=transparency)
self.ax.add_patch(a)
def update(self, val):
# grab current values of the slider
self.s = self.slide_s.val
self.theta = self.slide_theta.val
#self.theta = 2.*np.pi/3.
self.alpha = self.slide_alpha.val
start_pt, j = self.s_to_point(self.s)
bounces = self.make_trajectory()
[p.remove() for p in reversed(self.ax.patches[2:])]
self.draw_bounces(bounces)
# redraw canvas while idle
self.fig.canvas.draw_idle()
def brulefunc(self, label):
bdict = { 'Fixed': self.fixed_brule
, 'Fixed Monotonic': self.fixed_monotonic_brule
, 'Relative': self.relative_brule}
self.brule = bdict[label]
# print(self.brule.__name__)
# bounces = self.make_trajectory()
#
# [p.remove() for p in reversed(self.ax.patches[2:])]
# self.draw_bounces(bounces)
# # redraw canvas while idle
# self.fig.canvas.draw_idle()
def run(self):
# call update function on slider value change
self.slide_s.on_changed(self.update)
self.slide_theta.on_changed(self.update)
self.slide_alpha.on_changed(self.update)
plt.show()
if __name__ == '__main__':
env = Simple_Polygon("env", poly3[0], poly3[1:])
g = Game(env)
g.run()