@@ -62,6 +62,7 @@ class QdrantNeo4jRetriever(ExternalRetriever):
62
62
driver=neo4j_driver,
63
63
client=client,
64
64
collection_name="my_collection",
65
+ using="my_vector",
65
66
id_property_external="neo4j_id"
66
67
)
67
68
embedding = ...
@@ -71,6 +72,7 @@ class QdrantNeo4jRetriever(ExternalRetriever):
71
72
driver (neo4j.Driver): The Neo4j Python driver.
72
73
client (QdrantClient): The Qdrant client object.
73
74
collection_name (str): The name of the Qdrant collection to use.
75
+ using (str): The name of the Qdrant vector contained in your collection in case of multi-vector collection
74
76
id_property_neo4j (str): The name of the Neo4j node property that's used as the identifier for relating matches from Qdrant to Neo4j nodes.
75
77
id_property_external (str): The name of the Qdrant payload property with identifier that refers to a corresponding Neo4j node id property.
76
78
embedder (Optional[Embedder]): Embedder object to embed query text.
@@ -89,6 +91,7 @@ def __init__(
89
91
collection_name : str ,
90
92
id_property_neo4j : str ,
91
93
id_property_external : str = "id" ,
94
+ using : Optional [str ] = None ,
92
95
embedder : Optional [Embedder ] = None ,
93
96
return_properties : Optional [list [str ]] = None ,
94
97
retrieval_query : Optional [str ] = None ,
@@ -105,6 +108,7 @@ def __init__(
105
108
driver_model = driver_model ,
106
109
client_model = client_model ,
107
110
collection_name = collection_name ,
111
+ using = using ,
108
112
id_property_neo4j = id_property_neo4j ,
109
113
id_property_external = id_property_external ,
110
114
embedder_model = embedder_model ,
@@ -125,6 +129,7 @@ def __init__(
125
129
self .driver = validated_data .driver_model .driver
126
130
self .client = validated_data .client_model .client
127
131
self .collection_name = validated_data .collection_name
132
+ self .using = validated_data .using
128
133
self .embedder = (
129
134
validated_data .embedder_model .embedder
130
135
if validated_data .embedder_model
@@ -202,6 +207,7 @@ def get_search_results(
202
207
points = self .client .query_points (
203
208
collection_name = self .collection_name ,
204
209
query = query_vector ,
210
+ using = self .using ,
205
211
limit = top_k ,
206
212
with_payload = [self .id_property_external ],
207
213
** kwargs ,
0 commit comments