forked from fabianp/thesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.tex
executable file
·569 lines (404 loc) · 20.2 KB
/
index.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
\documentclass[nobib, a4paper, notoc, twoside, justified]{tufte-book}
\usepackage{amsmath,amssymb,amsfonts,amsbsy,amsthm}
\usepackage{wrapfig}
\usepackage{graphicx}
\usepackage{url}
\usepackage{makeidx}
\usepackage{sectsty}
\usepackage[sectionbib]{natbib}
\usepackage[sectionbib]{chapterbib}
\usepackage[toc, xindy]{glossaries}
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{minitoc}
\usepackage{booktabs}
\usepackage{color}
\usepackage{framed}
\usepackage{upgreek}
\usepackage[absolute]{textpos}
\usepackage[titles]{tocloft}
% \setlength\cftbeforefigskip{50pt}
\setlength\cftbeforechapskip{20pt}
\setlength\cftbeforesecskip{10pt}
\renewcommand{\cftchapfont}{\sffamily \color{msblue} \huge}
\renewcommand{\cftsecfont}{\it \sffamily \Large}
\renewcommand{\cftsubsecfont}{\sffamily \large}
% \usepackage{mdframed}
% \usepackage{titletoc}
% \definecolor{secnum}{RGB}{13,151,225}
% \definecolor{ptcbackground}{RGB}{212,237,252}
% \definecolor{ptctitle}{RGB}{0,177,235}
% \titlecontents{lsection}
% [5.8em]{\sffamily}
% {\color{secnum}\contentslabel{2.3em}\normalcolor}{}
% {\titlerule*[1000pc]{.}\contentspage\\\hspace*{-5.8em}\vspace*{5pt}%
% \color{white}\rule{\dimexpr\textwidth-15.5pt\relax}{1pt}}
% \newcommand\PartialToC{%
% \startcontents[chapters]%
% \begin{mdframed}[backgroundcolor=ptcbackground,hidealllines=true]
% \printcontents[chapters]{l}{1}{\colorbox{ptctitle}{%
% \parbox[t]{\dimexpr\textwidth-2\fboxsep\relax}{%
% \strut\color{white}\bfseries\sffamily\makebox[5em]{%
% Chapter~\thechapter\hfill}Contents}}\vskip5pt}
% \end{mdframed}%
% }
% \renewcommand{\cftchapterfont}{\normalfont\sffamily}
% \renewcommand{\cftsectionfont}{\normalfont\sffamily}
\definecolor{shadecolor}{RGB}{211, 211, 211}
\usepackage{listings}
\usepackage[utf8]{inputenc}
\pagestyle{myheadings}
% fonts
\usepackage{libertine}
\usepackage[libertine]{newtxmath}
\usepackage[T1]{fontenc}
\usepackage[tikz]{bclogo}
\usepackage{fourier-orns}
\setcaptionfont{\normalsize}
\setmarginnotefont{\normalsize}
\setsidenotefont{\normalsize}
\setcounter{secnumdepth}{2}
\setcounter{tocdepth}{1}
\graphicspath{{figures/}}
\definecolor{msblue}{rgb}{.204,.353,.541}
\newcommand{\red}{\color{red}}
\newcommand{\blue}{\color{blue}}
\DeclareMathOperator*{\vecop}{vec}
\def\RR{{\mathbb R}}
\def\YY{{\mathbf Y}}
\def\bfbeta{{\boldsymbol \beta}}
\def\bvarepsilon{{\boldsymbol \varepsilon}}
\def\bfvarepsilon{{\boldsymbol \varepsilon}}
\def\bfomega{{\boldsymbol \upomega}}
\def\bfalpha{{\boldsymbol \upalpha}}
\def\btheta{\boldsymbol \theta}
\newcommand{\balpha}{\boldsymbol \alpha}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\sign}{sign}
\def\NN{\mathbb N}
\def\CC{\mathbb C}
\providecommand{\B}[1]{\mathbf{#1}}
\def \lb {{\langle}}
\def \rb {{\rangle}}
\def\XX{\mathcal{X}}
\def\EE{\mathbb{E}}
\def\Rpsi{\mathcal{R}_n^{\psi}}
\definecolor{color1}{RGB}{251,180,174}
\definecolor{color2}{RGB}{179,205,227}
\definecolor{color3}{RGB}{204,235,197}
\definecolor{mslightblue}{rgb}{.31,.506,.741}
\newtheorem{lemma}{Lemma}
\newtheorem{result}{Result}
\newtheorem{corollary}{Corollary}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\makeatletter
\def\url@leostyle{%
\@ifundefined{selectfont}{\def\UrlFont{\sf}}{\def\UrlFont{\small\ttfamily}}}
\makeatother
\urlstyle{leo}
% chapter format
\titleformat{\chapter}%
{\Huge \sffamily \itshape\color{msblue}}% format applied to label+text
{\llap{\colorbox{msblue}{\parbox{1.5cm}{\hfill\itshape\Huge\color{white}\thechapter}}}}% label
{2pt}% horizontal separation between label and title body
{}% before the title body
[]% after the title body
% % section format
% \titleformat{\section}%
% {\normalfont\LARGE\itshape\color{msblue}}% format applied to label+text
% {\llap{\colorbox{orange}{\parbox{1.5cm}{\hfill\color{white}\thesection}}}}% label
% {1em}% horizontal separation between label and title body
% {}% before the title body
% []% after the title body
% % subsection format
% \titleformat{\subsection}%
% {\normalfont\large\itshape\color{blue}}% format applied to label+text
% {\llap{\colorbox{blue}{\parbox{1.5cm}{\hfill\color{white}\thesubsection}}}}% label
% {1em}% horizontal separation between label and title body
% {}% before the title body
% []% after the title body
\newcommand{\blankpage}{\newpage\hbox{}\thispagestyle{empty}\newpage}
\allsectionsfont{\rm \bf \color{msblue} \sffamily}
\title{Feature extraction and supervised learning on fMRI: from practice to theory}
\author{Fabian Pedregosa}
\makeglossaries
% Generates the index
\makeindex
% \RequirePackage[normalem]{ulem} %DIF PREAMBLE
% \RequirePackage{color}\definecolor{RED}{rgb}{1,0,0}\definecolor{BLUE}{rgb}{0,0,1} %DIF PREAMBLE
% \providecommand{\DIFadd}[1]{{\protect\color{blue}\uwave{#1}}} %DIF PREAMBLE
% \providecommand{\DIFdel}[1]{{\protect\color{red}\sout{#1}}} %DIF PREAMBLE
% %DIF SAFE PREAMBLE %DIF PREAMBLE
% \providecommand{\DIFaddbegin}{} %DIF PREAMBLE
% \providecommand{\DIFaddend}{} %DIF PREAMBLE
% \providecommand{\DIFdelbegin}{} %DIF PREAMBLE
% \providecommand{\DIFdelend}{} %DIF PREAMBLE
% %DIF FLOATSAFE PREAMBLE %DIF PREAMBLE
% \providecommand{\DIFaddFL}[1]{\DIFadd{#1}} %DIF PREAMBLE
% \providecommand{\DIFdelFL}[1]{\DIFdel{#1}} %DIF PREAMBLE
% \providecommand{\DIFaddbeginFL}{} %DIF PREAMBLE
% \providecommand{\DIFaddendFL}{} %DIF PREAMBLE
% \providecommand{\DIFdelbeginFL}{} %DIF PREAMBLE
% \providecommand{\DIFdelendFL}{} %DIF PREAMBLE
% %DIF END PREAMBLE EXTENSION ADDED BY LATEXDIFF
\begin{document}
% \dominitoc
\begin{titlepage}
\begin{fullwidth}
\begin{center}
\begin{textblock}{4}(1.5,0.5)
\begin{figure}
\includegraphics[width=\linewidth]{figures/logo_upmc.pdf}
\end{figure}
\end{textblock}
\begin{textblock}{4.8}(10,0.5)
\begin{figure}
\includegraphics[width=\linewidth]{figures/logotheque-inriascientifiquefr.eps}
\end{figure}
\end{textblock}
% \begin{textblock}
% \includegraphics[width=0.4\linewidth]{figures/logotheque-inriascientifiquefr.eps}
% \end{textblock}
\vspace*{30pt}
\textsc{{\huge université pierre et marie curie} \\
% {\vspace{10pt} \LARGE école doctorale informatique, \\télécommunications et électronique} \\
{\vspace{10pt} \LARGE doctoral school of computer science} \\
{\vspace{10pt}\LARGE prepared at parietal team - inria saclay} \\
}
% \textsc{\Large PhD thesis}\\[0.5cm]
\vspace{10pt}
% Statistical learning methods applied to fMRI: from BOLD timeseries
% to decoding.
% Feature extraction and supervised learning on fMRI: From practice to theory
\vspace{2pc}
{ \Huge
{\color{msblue} {Feature extraction and supervised learning on fMRI: from practice to theory}} \\[0.5cm]
% {\color{msblue} {Estimation de variables et apprentissage supervisé en IRMf: de la pratique à la théorie}} \\[0.5cm]
% {\it {from practice to theory}} \\[1.2cm]
% {\it multi-voxel pattern analysis.}
}
% \vspace{4pc}
% {\Large\aldineleft} \\
% \vspace{4pc}
\vspace{3pc}
{\Huge \it Fabian Pedregosa-Izquierdo} \\
\vspace{3pc}
{\LARGE A dissertation submitted in partial fulfillement \\ \vspace{10pt} of the requirements for the degree of doctor of science, \\ \vspace{10pt} specialized in computer science.} \\
\vspace{2pc}
{\LARGE Defended publicly the 20th of February 2015 in front of a jury composed of}
\vspace{2pc}
%\begin{table}
{\LARGE
\begin{tabular}{lll}
%{\bf Loss} &{\bf Surrogate} &{\bf Prediction} \\
\vspace{1pc}
{Advisors} & Francis Bach & INRIA / ENS, Paris, France \\
\vspace{1pc}
& Alexandre Gramfort & Telecom Paristech, Paris, France\\
\vspace{1pc}
{Reviewers} & Dimitri Van de Ville & Univ. Geneva / EPFL, Geneva, CH \\
\vspace{1pc}
&Alain Rakotomamonjy & University of Rouen, Rouen, France \\
\vspace{1pc}
{Examiners} & Ludovic Denoyer & UPMC, Paris, France \\
\vspace{1pc}
& Bertrand Thirion & INRIA / CEA, Saclay, France \\
\vspace{1pc}
& Marcel Van Gerven & Donders Instute, Nijmegen, NL \\
\end{tabular}
%\end{table}
}
\end{center}
\end{fullwidth}
\end{titlepage}
\begin{titlepage}
\begin{fullwidth}
\begin{center}
\begin{textblock}{4}(1.5,0.5)
\begin{figure}
\includegraphics[width=\linewidth]{figures/logo_upmc.pdf}
\end{figure}
\end{textblock}
\begin{textblock}{4.8}(10,0.5)
\begin{figure}
\includegraphics[width=\linewidth]{figures/logotheque-inriascientifiquefr.eps}
\end{figure}
\end{textblock}
% \begin{textblock}
% \includegraphics[width=0.4\linewidth]{figures/logotheque-inriascientifiquefr.eps}
% \end{textblock}
\vspace*{30pt}
\textsc{{\huge université pierre et marie curie} \\
{\vspace{10pt} \LARGE école doctorale informatique, \\télécommunications et électronique} \\
{\vspace{10pt}\LARGE équipe parietal - inria saclay}}
% \textsc{\Large PhD thesis}\\[0.5cm]
\vspace{10pt}
% Statistical learning methods applied to fMRI: from BOLD timeseries
% to decoding.
% Feature extraction and supervised learning on fMRI: From practice to theory
\vspace{2pc}
{ \Huge
{\color{msblue} {Estimation de variables et apprentissage supervisé en IRMf: de la pratique à la théorie}} \\[0.5cm]
% {\it {from practice to theory}} \\[1.2cm]
% {\it multi-voxel pattern analysis.}
}
% \vspace{4pc}
% {\Large\aldineleft} \\
% \vspace{4pc}
\vspace{3pc}
{\Huge \it Fabian Pedregosa-Izquierdo} \\
\vspace{3pc}
{\LARGE Thèse de doctorat pour obtenir le grade de \ \\[1ex]
{\bf DOCTEUR de l'UNIVERSIT\'E PIERRE ET MARIE CURIE} \ \\
}
\vspace{1pc}
{\LARGE Dirig\'ee par {Francis Bach} et {Alexandre Gramfort}.}
\vspace{1pc}
{\LARGE Présentée et soutenue publiquement le 20 Février 2015 devant \\ \vspace{10pt} un jury composé de :}
\vspace{1pc}
%\begin{table}
{\LARGE
\begin{tabular}{lll}
%{\bf Loss} &{\bf Surrogate} &{\bf Prediction} \\
\vspace{1pc}
{Directeurs} & Francis Bach & INRIA / ENS, Paris, France \\
\vspace{1pc}
& Alexandre Gramfort & Telecom Paristech, Paris, France\\
\vspace{1pc}
{ Rapporteurs} & Dimitri Van de Ville & Univ. Geneva / EPFL, Geneva, CH \\
\vspace{1pc}
&Alain Rakotomamonjy & University of Rouen, Rouen, France \\
\vspace{1pc}
{ Examinateurs} & Ludovic Denoyer & UPMC, Paris, France \\
\vspace{1pc}
& Bertrand Thirion & INRIA / CEA, Saclay, France \\
\vspace{1pc}
& Marcel Van Gerven & Donders Instute, Nijmegen, NL \\
\end{tabular}
%\end{table}
}
\end{center}
\end{fullwidth}
\end{titlepage}
% > - 1. Introduction to fMRI
% >
% > Brain functional architecture
% > Neural coding of mental processes
% > Functional Neuroimaging modalities: EEG, MEG , fMRI etc. (really brief on other modalities)
% > fMRI signals : history, what we measure, how, MRI basics
% >
% > - 2. From BOLD signal to activation maps (good transition + good)
% >
% > Preprocessing of fMRI
% > The BOLD signal: linear time invariant assumption
% > Models of the HRF (Glover, FIR, etc.)
% > The GLM
% > Statistical Univariate tests (contrasts)
% >
% > - 3. Beyond the canonical HRF
% >
% > FIR models
% > Bayesian JDE approaches
% > R1-GLM
% > R1 Optimization (algorithm)
% > Smooth Optimization: First order, Quasi-Newton and Newton methods
% > Benchmarks
% > A tensor formulation of the GLM (maybe for appendix) XXX : keep it here
% >
% > - 4. Encoding and Decoding models
% >
% > Decoding and decoding
% > Model selection and validation
% > Dimension reduction
% > Regularization
% > Sparsity
% >
% > Enhanced sensitivity via HRF estimation
% > Experimental Validation
% >
% > - 5. Prediction with ordinal labels
% >
% > Ordinal targets in decoding models
% > Ranking vs Ordinal Regression
% > Learning to rank from medical imaging datasets
% >
% > - 6. Surrogate loss functions for ordinal labels
% >
% > Design of surrogate loss functions
% > Consistency of Ranking (Duchi 2010)
% > Consistency of Ordinal Regression
\newpage\null\thispagestyle{empty}\newpage
\vspace*{\fill}
{\section*{\Huge \it Abstract}}
Until the advent of non-invasive neuroimaging modalities the knowledge of the human brain came from the study of its lesions, post-mortem analyses and invasive experimentations. Nowadays, modern imaging techniques such as fMRI are revealing several aspects of the human brain with progressively high spatio-temporal resolution. However, in order to answer increasingly complex neuroscientific questions the technical improvements in acquisition must be matched with novel data analysis methods. In this thesis we examine different applications of machine learning to the processing of fMRI data. We propose novel extensions and investigate the theoretical properties of different models.
% The goal of an fMRI experiments is to answer a neuroscientific question. However, it is usually not possible to perform hypothesis testing directly on the data output by the fMRI scanner. Instead, fMRI data enters a processing pipeline in which it suffers several transformations before conclusions are drawn.
Often the data acquired through the fMRI scanner follows a \emph{feature extraction} step in which time-independent activation coefficients are extracted from the fMRI signal. The first contribution of this thesis is the introduction a model named Rank-1 GLM (R1-GLM) for the joint estimation of time-independent activation coefficients and the hemodynamic response function (HRF). We quantify the improvement of this approach with respect to existing procedures on different fMRI datasets.
The second part of this thesis is devoted to the problem of fMRI-based \emph{decoding}, i.e., the task of predicting some information about the stimuli from brain activation maps. From a statistical standpoint, this problem is challenging
due to the high dimensionality of the data, often thousands of
variables, while the number of images available for training is small,
typically a few hundreds. We examine the case in which the target variable consist of discretely ordered values. The second contribution of this thesis is to propose the following two metrics to assess the performance of a decoding model: the absolute error and pairwise disagreement. We describe several models that optimize a convex surrogate of these loss functions and examine their performance on different fMRI datasets.
Motivated by the success of some ordinal regression models for the task of fMRI-based decoding, we turn to study some theoretical properties of these methods. The property that we investigate is known as \emph{consistency} or \emph{Fisher consistency} and relates the minimization of a loss to the minimization of its surrogate. The third, and most theoretical, contribution of this thesis is to examine the consistency properties of a rich family of surrogate loss functions that are used in the context of ordinal regression.
We give sufficient conditions for the consistency of the surrogate loss functions considered. This allows us to give theoretical reasons for some empirically observed differences in performance between surrogates.
% This results allows us to identify (at least from a theoretical perspective) the most appropriate surrogate loss functions.
% The study of consistency allows us to identify the surrogate loss functions that enjoy certain advantageous properties with respect to a given metric.
\vspace{10pt}
\paragraph{Keywords: } fMRI, BOLD, HRF, feature extraction, supervised learning, ranking, ordinal regression, decoding, encoding.
\vspace*{\fill}
\clearpage
% \newpage\null\newpage
\vspace*{\fill}
{\section*{\Huge \it Acknowledgements}}
My first words of gratitude will be for my advisors. I would like to thank Alexandre Gramfort for sharing with me during these three years his passion, his expertise and his time. You have introduced me into the world of research while at the same time living me the freedom to pursue my goals, and I will always be in debt for this. Also a great thanks to Francis Bach, who always had time for my quesions. Thanks you for your patience, for encouraging me when I drifted me into areas that were new to me and for enlightening remarks on several aspects of my work. I would also like to thank Bertrand Thirion, my ``advisor in the shadow'', for hosting me within the Parietal team and for sharing with many of the ideas that are developed within this thesis. Your honesty, patience and thoroughness are a continuous source of inspiration. I would also like to thank Bertrand and Gael Varoquaux for creating a unique work environment at the Parietal team: it has been a pleasure to be a part of this lab.
This work would not have been possible without the help of my co-authors. I would first like to thank Michael Eickenberg for the work we did together and for being always enthusiastic about new ideas. I would also like to thank Philippe Ciuciu for sharing his expertise on HRF estimation with me. The rest of the Parietal team also deserves a mention for coping with me during so much time: Gael Varoquaux (for bringing me to France five years ago), Régine Bricquet (a dedicated assistant makes a big difference), Elvis ``amigo amigo computador'' Dohmatob, Danilo Bzdok, Vincent ``comme ta soeur'' Michel, Aina ``sobrasada'' Frau, Fernando Yepes, Mehdi Rahim, Alexandre Abraham, Virgile Fritsch, Jean Kossaifi, Andres Hoyos, Loic Esteve, Yannick ``horrible personne'' Schwarz, Olivier Grisel, Salma Bougacha, Philippe Gervais, Benoit ``petaflop'' Da Mota, Bernard Ng, Viviana ``reghishtrashion'' Siless, Solveig Badillo, Nicolas Chauffert and Matthieu Kowalski. I've also had the pleasure to interact with people from the Unicog team, from which I would like to mention Valentina Borghesani, Manuela Piazza, Christophe Pallier, Elodie Cauvet, Evelyn Eger, Lucie Charles, Pedro Pinhero Chagas and Ramón Guevara. I'm also grateful to the scikit-learn crowd for teaching me so much about programming and machine learning: Andreas Mueller, Vlad Niculae, Lars Buitinck, Mathieu Blondel, Jake VanderPlas, Peter Prettenhofer and many others.
I would equally like to thanks Alain Rakotomamonjy and Dimitri Van de Ville for accepting to review this manuscript and to Ludovic Denoyer, Marcel Van Gerven and Bertrand Thirion for accepting to be part of the thesis defense jury.
Mis últimas palabras son para mi familia: para mi madre, mi padre y mi abuela. Nada de esto habría sido posible sin vuestro apoyo. Un agradecimento especial para Vale, por todo y por llegar en el momento adecuado. También para los amigos de toda la vida, aquellos con los que no existe la distancia: Aitor Frías, Hugo Romero y Ángel Soler. Un grazie anche alla mia nuova famiglia italiana, per avermi fatto sentire il benvenuto nella vostra vita.
\vspace*{\fill}
\clearpage
\newpage\null\newpage
\vspace*{\fill}
{\section*{\Huge \it Notation}}
\vspace{50pt}
\begin{fullwidth}
\def\arraystretch{1.5}
\begin{tabular}{p{3cm} p{5cm} p{5cm}}
% \toprule
% \multicolumn{3}{c}{Different Approaches to Ordinal Regression}\\
\cmidrule{1-3}
Notation & Name & Definition\\
\midrule
$\Gamma(x)$ & Gamma function & $\Gamma(x) = \int_{0}^{\infty} x^{t-1} e^{-x} dx$\\
$\mathcal{N}(\mu, \sigma^2)$ & Normal distribution with mean $\mu$ and variance $\sigma$ & \\
$\| \B{x} \|$ \text{ or } $\| \B{x} \|_2$ & Euclidean norm for vectors & $\sqrt{\sum_i {x}_i^2}$ \\
$\| \B{x} \|_{\mathcal{F}}$ & Frobenius norm of a matrix & $\sqrt{ \sum_{i} \sum_{j} \B{X}_{i j} ^2}$ \\
$\B{I}_n$ & Identity matrix of size $n$ & $I_{ij} = \delta_{ij}, ~\forall 1 \leq i, j \leq n$\\
$\B{1}_n$ & Vector of ones of size $n$ & $1_{i} = 1, ~\forall 1 \geq i \geq n$ \\
$\text{tr}(\B{A})$ & Trace of a matrix & $\sum_{i} A_{ii}$ \\
$\B{X}^{\dagger}$ & Moore-Penrose pseudoinverse & Generalized inverse matrix\\
$\B{A}\otimes\B{B}$ & Kronecker product of matrices $\B{A}$ and $\B{B}$ & \\
$\text{vec}(\B{A})$ & Vectorization of a matrix & Concatenation of the columns of a matrix into a single column vector\\
$\mathbb{E}(X)$ & Expectation of the random variable X & $\int X dP$\\
$\mathcal{R}_{\ell}(h)$ & Risk of the estimator $h$ & $\EE_{X \times Y}(\ell(Y, h(X)))$ \\
$\mathcal{H}(x)$ & Heaviside function & $\mathcal{H}(x) = 1$ if $x \geq 0$ and $0$ otherwise\\
$[k]$ & Integers from 1 to $k$ & $[k] = \{1,~2, \ldots,~k \}$ \\
\bottomrule
\end{tabular}
\end{fullwidth}
\vspace*{\fill}
%\newpage
\begin{fullwidth}
\tableofcontents
\end{fullwidth}
% \listoffigures
% \listoftables
\include{abstract}
\include{chapter_1/chapter_1}
\include{chapter_2/chapter_2}
\include{chapter_3/chapter_3}
\include{chapter_4/chapter_4}
\include{chapter_5/chapter_5}
\include{chapter_6/chapter_6}
\include{appendix_1}
\printglossaries
\end{document}