-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
126 lines (86 loc) · 3.28 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import random
from os import path
from argparse import ArgumentParser
import torch
from torch.cuda import is_available as cuda_is_available
from model import LightGPT, LightGPTInstruct
from data import SmolTalk
import tiktoken
from tiktoken import Encoding
def main():
parser = ArgumentParser(
description="Generate text from the model given a prompt.",
)
parser.add_argument(
"--checkpoint_path", default="./checkpoints/checkpoint.pt", type=str
)
parser.add_argument("--lora_path", default=None, type=str)
parser.add_argument("--max_tokens", default=1000, type=int)
parser.add_argument("--context_length", default=1024, type=int)
parser.add_argument("--temperature", default=1.0, type=float)
parser.add_argument("--top_k", default=500, type=int)
parser.add_argument("--top_p", default=0.9, type=float)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=None, type=int)
args = parser.parse_args()
if "cuda" in args.device and not cuda_is_available():
raise RuntimeError("Cuda is not available.")
torch.set_float32_matmul_precision("high")
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
checkpoint = torch.load(
args.checkpoint_path, map_location=args.device, weights_only=True
)
tokenizer = tiktoken.get_encoding(checkpoint["token_encoding"])
eos_indices = {tokenizer.eot_token}
model = LightGPT(**checkpoint["model_args"])
model = torch.compile(model)
model.load_state_dict(checkpoint["model"])
print("Model checkpoint loaded")
if args.lora_path:
tokenizer = Encoding(
name=tokenizer.name,
pat_str=tokenizer._pat_str,
mergeable_ranks=tokenizer._mergeable_ranks,
special_tokens={
**tokenizer._special_tokens,
"<|im_start|>": tokenizer.n_vocab,
"<|im_end|>": tokenizer.n_vocab + 1,
},
)
eos_indices = {*eos_indices, tokenizer.n_vocab + 1}
checkpoint = torch.load(
args.lora_path, map_location=args.device, weights_only=True
)
model = LightGPTInstruct(model, **checkpoint["lora_args"])
model = torch.compile(model)
model.load_state_dict(checkpoint["lora"], strict=False)
model.merge_lora_parameters()
print("LoRA checkpoint loaded")
model.to(args.device)
model.eval()
while True:
prompt = input("Enter a prompt: ")
if args.lora_path:
prompt = SmolTalk.PROMPT_TEMPLATE.format(role="user", message=prompt)
prompt = tokenizer.encode_ordinary(prompt)
prompt = torch.tensor(prompt, dtype=torch.int64, device=args.device)
for token in model.generate(
prompt,
args.max_tokens,
args.context_length,
args.temperature,
args.top_k,
args.top_p,
eos_indices,
):
out = tokenizer.decode_single_token_bytes(token).decode(
"utf-8", errors="replace"
)
print(out, end="", flush=True)
print("\n")
if "y" not in input("Go again? (yes|no): ").lower():
break
if __name__ == "__main__":
main()